Write each quotient as a single power.

Write Each Quotient As A Single Power.

Answers

Answer 1

[tex]a)\frac{-3^4}{3^4} = -3^{4-4} = -1[/tex]

[tex]b)\frac{(-9)^{10}}{(-9)^5} = (-9)^{10-5}= (-9)^5[/tex]

[tex]c)\frac{11^9}{11^6} = 11^{9-6} =11^3[/tex]

ok done. Thank to me :>


Related Questions

What is the value of b? -11b + 7 =40 (also there is another question in the bottom of the picture. If you can answer it please do)

Answers

Problem 1

The idea here is to follow PEMDAS in reverse to undo what is happening to the variable b, so we can isolate it.

-11b + 7 = 40

-11b = 40-7

-11b = 33

b = 33/(-11)

b = -3

To check this value, plug it back into the original equation. You should get 40 on each side to help confirm the answer.

Answer:  b = -3

=====================================================

Problem 2

There are two ways we can solve. One method is to use the hint your teacher gave you. So we'll distribute first and then follow the same idea as problem 1

9(p-4) = -18

9p-36 = -18

9p = -18+36

9p = 18

p = 18/9

p = 2

Another method you can use is to follow these steps

9(p-4) = -18

p-4 = -18/9

p-4 = -2

p = -2+4

p = 2

Either way, we get the same result. To check the answer, replace every p with 2 in the original equation. You should get -18 on the left side after simplifying.

Answer:   p = 2

Do number 6 plz thanks​

Answers

Answer:

24cm

Step-by-step explanation:

Question: Find the length of side OR.

Answer + explanation:

24cm

Since PQ = 24 cm, OR = 24 cm because they're paralleled and congruent!

Answer:

<O = 125

OR = 24

Step-by-step explanation:

consecutive angles are supplementary in a parallelogram

<R + <O = 180

55 + <O =180

<O = 180-55

< O = 125

opposite sides are congruent in a parallelogram

PQ = OR = 24

Solve the equation.
1. For parentheses:
Distribute
4-2(x+7) = 3(x+5)
2. If necessary:
Combine Terms
3. Apply properties:
Add Subtract
Multiply
Divide
4. To start over:
Reset

Answers

Answer:

x = -5

Step-by-step explanation:

4-2(x+7) = 3(x+5)

Distribute

4 - 2x-14 = 3x+15

Combine like terms

-2x-10 = 3x+15

Add 2x to each side

-2x-10 +2x =3x+2x+15

-10 = 5x+15

Subtract 15 from each side

-10-15 = 5x+15-15

-25 = 5x

Divide by 5

-25/5 = 5x/5

-5 =x

A parallel plate capacitor has an area of ​​1.5 cm
2
and the plates are separated a distance of 2.0 mm with air between them. How much charge does this capacitor store when connected to a 12V battery?

Answers

Step-by-step explanation:

Given:

[tex]A=1.5\:\text{cm}^2×\left(\frac{1\:\text{m}^2}{10^4\:\text{cm}^2}\right)=1.5×10^{-4}\:\text{m}^2[/tex]

[tex]d = 2.0\:\text{mm} = 2.0×10^{-3}\:\text{mm}[/tex]

The charge stored in a capacitor is given by [tex]Q = CV.[/tex] In the case of a parallel-plate capacitor, its capacitance C is given by

[tex]C = \epsilon_0\dfrac{A}{d}[/tex]

where [tex]\epsilon_0[/tex] = permittivity of free space. The amount of charge stored in the capacitor is then

[tex]Q = \left(\epsilon_0\dfrac{A}{d}\right)V[/tex]

[tex]\:\:\:\:\:=\left[\dfrac{(8.85×10^{-12}\:\text{F/m})(1.5×10^{-4}\:\text{m}^2)}{(2.0×10^{-3}\:\text{m})}\right](12\:\text{V})[/tex]

[tex]\:\:\:\:\:=8.0×10^{-12}\:\text{C}[/tex]

The physical plant at the main campus of a large state university recieves daily requests to replace fluorescent lightbulbs. The distribution of the number of daily requests is bell-shaped and has a mean of 45 and a standard deviation of 3. Using the empirical rule, what is the approximate percentage of lightbulb replacement requests numbering between 42 and 45?

Do not enter the percent symbol.
ans = %

Answers

Answer:

34%

Step-by-step explanation:

Given that the distribution of daily light bulb request replacement is approximately bell shaped with ;

Mean , μ = 45 ; standard deviation, σ = 3

Using the empirical formula where ;

68% of the distribution is within 1 standard deviation from the mean ;

95% of the distribution is within 2 standard deviation from the mean

Lightbulb replacement numbering between ;

42 and 45

Number of standard deviations from the mean /

Z = (x - μ) / σ

(x - μ) / σ < Z < (x - μ) / σ

(42 - 45) / 3 = -1

This lies between - 1 standard deviation a d the mean :

Hence, the approximate percentage is : 68% / 2 = 34%

At a time hours after taking a tablet, the rate at which a drug is being eliminated r(t)= 50 (e^-01t - e^-0.20t)is mg/hr. Assuming that all the drug is eventually eliminated, calculate the original dose.

Answers

Answer:

2500 mg

Step-by-step explanation:

Since r(t) is the rate at which the drug is being eliminated, we integrate r(t) with t from 0 to ∞ to find the original dose of drug, m. Since all of the drug will be eliminated at time t = ∞.

Since r(t) =  50 (e^-01t - e^-0.20t)

m = ∫₀⁰⁰50 (e^-01t - e^-0.20t)

= 50∫₀⁰⁰(e^-01t - e^-0.20t)

= 50[∫₀⁰⁰e^-01t - ∫₀⁰⁰e^-0.20t]

= 50([e^-01t/-0.01]₀⁰⁰ - [e^-0.20t/-0.02]₀⁰⁰)

= 50(1/-0.01[e^-01(∞) - e^-01(0)] - {1/-0.02[e^-0.02(∞) - e^-0.02(0)]})

= 50(1/-0.01[e^-(∞) - e^-(0)] - {1/-0.02[e^-(∞) - e^-(0)]})

= 50(1/-0.01[0 - 1] - {1/-0.02[0 - 1]})

= 50(1/-0.01[- 1] - {1/-0.02[- 1]})

= 50(1/0.01 - 1/0.02)

= 50(100 - 50)

= 50(50)

= 2500 mg


in the figure above, the square ABCD is inscribed in a circle. if the radius of the circle is r, the hatbis the length of arc APD in terms of r?
a) (pi)r/4
b) (pi)r/2
c) (pi)r
d) (pi)r^2/4

Answers

The length of arc APD is: [tex]\frac{\pi r}{2}[/tex]

A square when inscribed in a circle will fit the circle such that, the 4 edges of the square touches the sides of the circle. The radius of the circle can be drawn from any of the 4 edges.

Given that ABCD is a square:

This means that:

[tex]AB = BC = CD = DA[/tex] --- equal side lengths

To calculate the length of arc APD, we make use of the following arc length formula

[tex]APD = \frac{\theta}{360} * 2\pi r[/tex]

Where

[tex]\theta = \angle ADO[/tex] and O is circle center

Since ABCD is a square, then:

[tex]\theta = \angle ADO = 90^o[/tex]

So, we have:

[tex]APD = \frac{90}{360} * 2\pi r[/tex]

[tex]APD = \frac{1}{4} * 2\pi r[/tex]

[tex]APD = \frac{\pi r}{2}[/tex]

Read more at:

https://brainly.com/question/13644013

A car rental agency rents 480 cars per day at a rate of $20 per day. For each $1 increase in rate, 10 fewer cars are rented. At what rate should the cars be rented to produce the maximum income? What is the maximum income?​

Answers

Answer:

340 cars at $ 34 should be rented to produce the maximum income of $ 11,560.

Step-by-step explanation:

Given that a car rental agency rents 480 cars per day at a rate of $ 20 per day, and for each $ 1 increase in rate, 10 fewer cars are rented, to determine at what rate should the cars be rented to produce the maximum income and what is the maximum income, the following calculations must be performed:

480 x 20 = 9600

400 x 28 = 11200

350 x 33 = 11550

300 x 38 = 11400

310 x 37 = 11470

320 x 36 = 11520

330 x 35 = 11550

340 x 34 = 11560

Therefore, 340 cars at $ 34 should be rented to produce the maximum income of $ 11,560.

Find the remainder when f(x)=x3−4x2−6x−3 f ( x ) = x 3 − 4 x 2 − 6 x − 3 is divided by x+1

Answers

Answer:

The remainder is -2.

Step-by-step explanation:

According to the Polynomial Remainder Theorem, if we divide a polynomial P(x) by a binomial (x - a), then the remainder of the operation will be given by P(a).

Our polynomial is:

[tex]P(x) = x^3-4x^2-6x-3[/tex]

And we want to find the remainder when it's divided by the binomial:

[tex]x+1[/tex]

We can rewrite our divisor as (x - (-1)). Hence, a = -1.

Then by the PRT, the remainder will be:

[tex]\displaystyle\begin{aligned} R &= P(-1)\\ &=(-1)^3-4(-1)^2-6(-1)-3 \\ &= (-1)-4(1)+(6)-3 \\ &= -2 \end{aligned}[/tex]

The remainder is -2.

In a model, a submarine is located at point (0, 0) on the coordinate plane. The submarine’s radar range has an equation of 2x2 + 2y2 = 128

Draw the figure on a graph and label the location of the submarine. Make sure your name is on the paper, and label this activity Part 2.
Can the submarine’s radar detect a ship located at the point (6, 6) ? Mark that location on your graph, and explain how you know whether or not the ship will be detected in the space provided on the Circles Portfolio Worksheet.

Answers

Answer:

Remember that for a circle centered in the point (a, b) and with a radius R, the equation is:

(x - a)^2 + (y - b)^2 = R^2

Here we know that the submarine is located at the point (0, 0)

And the radar range has the equation:

2*x^2 + 2*y^2 = 128

You can see that this seems like a circle equation.

If we divide both sides by 2, we get:

x^2 + y^2 = 128/2

x^2 + y^2 = 64 = 8^2

This is the equation for a circle centered in the point (0, 0) (which is the position of the submarine) of radius R = 8 units.

The graph can be seen below, this is just a circle of radius 8.

We also want to see if the submarine's radar can detect a ship located in the point (6, 6)

In the graph, this point is graphed, and you can see that it is outside the circle.

This means that it is outside the range of the radar, thus the radar can not detect the ship.

What is the extreme value of the polynomial function f(x)= x2 - 4?

Answers

Answer:

+∞.

Step-by-step explanation:

That would be positive infinity.

The extreme value of the given polynomial [tex]f(x) = x^{2} -4[/tex] is ∞.

What is extreme value of a polynomial?

Extreme values of a polynomial are the peaks and valleys of the polynomial—the points where direction changes.

What are the steps of finding the extreme value of any polynomial?

The following steps which are required to find the extreme value of polynomial are:

Arrange the polynomial into the the form of [tex]ax^{2} +bs+c[/tex] where a, b and c are numbers.Determine whether a, the coefficient of the [tex]x^{2}[/tex] term, is positive or negative.If the term is positive, the extreme value will be the infinity because the value will continue to grow as x increases.If it is negative, use the formula [tex]\frac{-b}{2a}[/tex] to find the value for extreme. And then plug [tex]x = \frac{-b}{2a}[/tex] in the original polynomial to calculate the extreme value of the polynomial.

According to the given question.

We have a polynomial

[tex]f(x) = x^{2} -4[/tex]

Since, in the given polynomial the coefficient of [tex]x^{2}[/tex] is positive . Therefore, the extreme value of the given polynomial is infinity because the value will continue to grow as x increases.

Hence, the extreme value of the given polynomial [tex]f(x) = x^{2} -4[/tex] is ∞.

Find out more information about extreme value of a polynomial here:

https://brainly.com/question/16597253

#SPJ2

Find the missing Side of the triangle

Answers

Answer:

2√15

Step-by-step explanation:

Use the Pythagorean theorem.

2² + x² = 8²

x² + 4 = 64

x² = 60

x² = 4 * 15

x = 2√15

Instructions are in the picture

Answers

Answer:

123123 3213123 12312 dasdsd aw dasd sda asdasd

Step-by-step explanation:

Please look below (Please Explain and NO LINKS)

Answers

Answer:

Mean = Sum of all numbers divided by the amount of numbers

[tex]Mean/Average=\frac{3+1+1.5+1.25+2.25+4+1+2}{8} =\frac{16}{8} =2[/tex]

Median = the middle number when the ordered from least to greatest.

From least to greatest: [tex]1, 1, 1.25, 1.5, 2, 2.25, 3, 4[/tex]The two middle numbers are 1.5 and 2.

If there are two middle numbers, find the mean/average of those numbers:

[tex]\frac{1.5+2}{2} =\frac{3.5}{2} =1.75[/tex]

Therefore, the answer would be:

Mean = 2Median = 1.75

The population of Americans age 55 and older as a percentage of the total population is approximated by the function f(t) = 10.72(0.9t + 10)^0.3 (0 <= t < = 20)

where t is measured in years, with t=0 corresponding to the year 2000.

Required:
a. At what rate was the percentage of Americans age 55 and older changing at the beginning of 2002?
b. At what rate will the percentage of Americans age 55 and older be changing in 2017?
c. What will be the percentage of the population of Americans age 55 and older in 2017?

Answers

Answer:

Part A)

About 0.51% per year.

Part B)

About 0.30% per year.

Part C)

About 28.26%.

Step-by-step explanation:

We are given that the population of Americans age 55 and older as a percentange of the total population is approximated by the function:

[tex]f(t) = 10.72(0.9t+10)^{0.3}\text{ where } 0 \leq t \leq 20[/tex]

Where t is measured in years with t = 0 being the year 2000.

Part A)

Recall that the rate of change of a function at a point is given by its derivative. Thus, find the derivative of our function:

[tex]\displaystyle f'(t) = \frac{d}{dt} \left[ 10.72\left(0.9t+10\right)^{0.3}\right][/tex]

Rewrite:

[tex]\displaystyle f'(t) = 10.72\frac{d}{dt} \left[(0.9t+10)^{0.3}\right][/tex]

We can use the chain rule. Recall that:

[tex]\displaystyle \frac{d}{dx} [u(v(x))] = u'(v(x)) \cdot v'(x)[/tex]

Let:

[tex]\displaystyle u(t) = t^{0.3}\text{ and } v(t) = 0.9t+10 \text{ (so } u(v(t)) = (0.9t+10)^{0.3}\text{)}[/tex]

Then from the Power Rule:

[tex]\displaystyle u'(t) = 0.3t^{-0.7}\text{ and } v'(t) = 0.9[/tex]

Thus:

[tex]\displaystyle \frac{d}{dt}\left[(0.9t+10)^{0.3}\right]= 0.3(0.9t+10)^{-0.7}\cdot 0.9[/tex]

Substitute:

[tex]\displaystyle f'(t) = 10.72\left( 0.3(0.9t+10)^{-0.7}\cdot 0.9 \right)[/tex]

And simplify:

[tex]\displaystyle f'(t) = 2.8944(0.9t+10)^{-0.7}[/tex]

For 2002, t = 2. Then the rate at which the percentage is changing will be:

[tex]\displaystyle f'(2) = 2.8944(0.9(2)+10)^{-0.7} = 0.5143...\approx 0.51[/tex]

Contextually, this means the percentage is increasing by about 0.51% per year.

Part B)

Evaluate f'(t) when t = 17. This yields:

[tex]\displaystyle f'(17) = 2.8944(0.9(17)+10)^{-0.7} =0.3015...\approx 0.30[/tex]

Contextually, this means the percetange is increasing by about 0.30% per year.

Part C)

For this question, we will simply use the original function since it outputs the percentage of the American population 55 and older. Thus, evaluate f(t) when t = 17:

[tex]\displaystyle f(17) = 10.72(0.9(17)+10)^{0.3}=28.2573...\approx 28.26[/tex]

So, about 28.26% of the American population in 2017 are age 55 and older.

The length of a rectangular field is 25 m more than its width. The perimeter of the field is 450 m. What is the actual width and length?

Answers

Answer:

length= 125

width= 100

Step-by-step explanation:

let width have a length of x m

therefore length= (x+25)m

perimeter=2(length +width)

p=2((x+25)+x)

p=4x+50

but we have perimeter to be 450,, we equate it to 4x+50 above,

450=4x+50

4x=400

x=100 m

length= 125

width= 100

Translate into an algebraic expression:
n-1 increased by 110%

Answers

Answer:

Step-by-step explanation:

(n-1)1.1

What is the value of |-6|—|6|-(-6)?

The solution is

Answers

Answer:

6

Step-by-step explanation:

|-6| = 6

|6| = 6

- -6 = +6

so, we have

6 - 6 + 6 = 6

The consumer price index (CPI), issued by the U.S. Bureau of Labor Statistics, provides a means of determining the purchasing power of the U.S. dollar from one year to the next. Using the period from 1982 to 1984 as a measure of 100.0, the CPI figures for selected years from 2002 to 2016 are shown here. Year Consumer Price Index 2002 179.9 2004 188.9 2006 201.6 2008 215.3 2010 218.1 2012 229.6 2014 236.7 2016 240.0 E. To use the CPI to predict a price in a particular year, we can set up a proportion and compare it with a known price in another year, as follows. price in year A index in year A price in year B index in year B​

Answers

‏An object travels for 3 s at an average speed of 10 m/s and then for 5 s at an average speed of 15 m/s , The average speed over the 8 s period is Select one : a . 12.5 m/s * b . 13.125 m/s O c. 105 m/s d. 3.125 m/s

If sum of first 6 digits of AP is 36 and that of the first 16 terms is 255,then find the sum of first ten terms.

•Please answer it correctly ( step by step)

Answers

Answer:

100

Step-by-step explanation:

We have the sum of first n terms of an AP,

Sn = n/2 [2a+(n−1)d]

Given,

36= 6/2 [2a+(6−1)d]

12=2a+5d ---------(1)

256= 16/2 [2a+(16−1)d]

32=2a+15d ---------(2)

Subtracting, (1) from (2)

32−12=2a+15d−(2a+5d)

20=10d ⟹d=2

Substituting for d in (1),

12=2a+5(2)=2(a+5)

6=a+5 ⟹a=1

∴ The sum of first 10 terms of an AP,

S10 = 10/2 [2(1)+(10−1)2]

S10 =5[2+18]

S10 =100

This is the sum of the first 10 terms.

Hope it will help.

[tex]\sf\underline{\underline{Question:}}[/tex]

If sum of first 6 digits of AP is 36 and that of the first 16 terms is 255,then find the sum of first ten terms.

$\sf\underline{\underline{Solution:}}$

$\sf\bold\purple{||100||}$

$\space$

$\sf\underline\bold\red{||Step-by-Step||}$

$\sf\bold{Given:}$

$\sf\bold{S6=36}$ $\sf\bold{S16=255}$

$\space$

$\sf\bold{To\:find:}$

$\sf\bold{The \: sum\:of\:the\:first\:ten\:numbers}$

$\space$

$\sf\bold{Formula\:we\:are\:using:}$

$\implies$ $\sf{ Sn=}$ $\sf\dfrac{N}{2}$ $\sf\small{[2a+(n-1)d]}$

$\space$

$\sf\bold{Substituting\:the\:values:}$

→ $\sf{S6=}$ $\sf\dfrac{6}{2}$ $\sf\small{[2a+(6-1)d]}$

→ $\sf{36 = 3[2a+(6-1)d]}$

→$\sf{12=[2a+5d]}$ $\sf\bold\purple{(First \: equation)}$

$\space$

$\sf\bold{Again,Substituting \: the\:values:}$

→ $\sf{S16}$ $\sf\dfrac{16}{2}$ $\sf\small{[2a+(16-1)d]}$

→ $\sf{255=8[2a + (16-1)d]}$

:: $\sf\dfrac{255}{8}$ $\sf\small{=31.89=32}$

→ $\sf{32=[2a+15d]}$ $\sf\bold\purple{(Second\:equation)}$

$\space$

$\sf\bold{Now,Solve \: equation \: 1 \:and \:2:}$

→ $\sf{10=20}$

→ $\sf{d=}$ $\sf\dfrac{20}{10}$ $\sf{=2}$

$\space$

$\sf\bold{Putting \: d=2\: in \:equation - 1:}$

→ $\sf{12=2a+5\times 2}$

→ $\sf{a = 1}$

$\space$

$\sf\bold{All\:of\:the\:above\:eq\: In \: S10\:formula:}$

$\mapsto$ $\sf{S10=}$ $\sf\dfrac{10}{2}$ $\sf\small{[2\times1+(10-1)d]}$

$\mapsto$ $\sf{5(2\times1+9\times2)}$

$\mapsto$ $\sf\bold\purple{5(2+18)=100}$

$\space$

$\sf\small\red{||Hence , the \: sum\: of \: the \: first\:10\: terms\: is\:100||}$

_____________________________

Given coordinates A(3,3),B(2,5),C(4,3) complete transformation. Complete double reflection over the lines y=2 followed by y=0.​

Answers

9514 1404 393

Answer:

A"(3, -1)B"(2, 1)C"(4, -1)

Step-by-step explanation:

Reflection over 'a' then over 'b' will result in a translation of 2(b -a). Here, we have a=2, b=0, so the translation is 2(0-2) = -4. The reflection is over horizontal lines, so the transformation is ...

  (x, y) ⇒ (x, y -4)

  A(3, 3) ⇒ A"(3, -1)

  B(2, 5) ⇒ B"(2, 1)

  C(4,3) ⇒ C"(4, -1)

write 342 to 1 significant figure​

Answers

Answer:

300

Step-by-step explanation:

A significant figure is the most important (largest) number you can round it to.

As it wants 1 significant figure, you count 1 to the left and round the 4 down.

Hope this helps :)

helppppp plsss ??? plssss ??

Answers

Answer:

3 is correct dear

i hope it will help u

Assume that human body temperatures are normally distributed with a mean of 98.19 and a standard deviation of 0.61

Answers

Answer:

Ok I'm assuming that know what??

Step-by-step explanation:

Choose the correct elements in the set for the following:


{y | y is an integer and y >/= -3}


{3, 4, 5, 6, . . .}

{−2, −1, 0, 2, . . .}

{−1, 0, 1, 2, . . }

{−3, −2, −1, 0, . . .}


****PLEASE explain your answer****

Answers

Answer:

D

Step-by-step explanation:

Y => - 3 that is {−3, −2, −1, 0, . . .}

What are four ways an inequality can be written?

Answers

Answer:

There are four ways to represent an inequality: Equation notation, set notation, interval notation, and solution graph.

Eli takes the 17 apples home, and he bakes as many apple pies
as he can. He uses 7 apples in each pie. How many apple pies does
Eli bake? How many apples are left?

Answers

Answer:

2 with 3 left over

Step-by-step explanation:

17 divided by 2 is 14 with 3 remaining

Answer:

2 pies

Step-by-step explanation:


Find the measures of angles 1 and 2. If necessary, round to the tenths place.
Hint: Do not assume that Point D is the center of the circle.

A. m<1 = 20 m<2= 20
B. m<1 =40 m<2 = 140
C. m<1 = 82.5 m<2 = 97.5
D. m<1 =97.5 m<2= 82.5

Answers

Answer:

Option C

Step-by-step explanation:

From the picture attached,

m∠ABC = 40° [Given]

Since, measure of the intercepted arc is double of the measure of the inscribed angle.

Therefore, m(arc AC) = 2(m∠ABC)

m(arc AC) = 2(40°)

                 = 80°

m(arc FB) = 115° [Given]

By applying theorem of the angles formed by the chords inside a circle,

m∠2 = [tex]\frac{1}{2}(\text{arc}AC+\text{arc}FB)[/tex]

        = [tex]\frac{1}{2}(80^{\circ}+115^{\circ})[/tex]

        = 97.5°

m∠1 + m∠2 = 180° [Linear pair of angles are supplementary]

m∠1 + 97.5° = 180°

m∠1 = 180° - 97.5°

       = 82.5°

Option C is the answer.

Can someone do #2?❤️

Answers

Answer:

b

Step-by-step explanation:

A proportional relationship is a straight line.  Is must also go through the point (0,0)

b

Answer:

Step-by-step explanation:

A proportional relationship is a straight line.  Is must also go through the point (0,0)

A researcher records the repair cost for 27 randomly selected refrigerators. A sample mean of $60.52 and standard deviation of $23.29 are subsequently computed. Determine the 90% confidence interval for the mean repair cost for the refrigerators. Assume the population is approximately normal. Step 1 of 2 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.

Answers

Answer:

The critical value is [tex]T_c = 1.7056[/tex]

The 90% confidence interval for the mean repair cost for the refrigerators is ($52.875, $68.165).

Step-by-step explanation:

We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.

The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So

df = 27 - 1 = 26

90% confidence interval

Now, we have to find a value of T, which is found looking at the t table, with 26 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.9}{2} = 0.95[/tex]. So we have T = 1.7056, which means that the critical value is [tex]T_c = 1.7056[/tex]

The margin of error is:

[tex]M = T\frac{s}{\sqrt{n}} = 1.7056\frac{23.29}{\sqrt{27}} = 7.645[/tex]

In which s is the standard deviation of the sample and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 60.52 - 7.645 = $52.875.

The upper end of the interval is the sample mean added to M. So it is 60.52 + 7.645 = $68.165.

The 90% confidence interval for the mean repair cost for the refrigerators is ($52.875, $68.165).

Other Questions
AB with endpoints A(-2, -3) and B(4,4) is reflected in the line y = x to create its image A'B' Graph A' B' Then find the perimeter of the figure formed by the segments ABBA' and AA to the nearest tenth as a Given the function f(x) = - 3x + 2 then what is - 2f * (x) as a simplified polynomial ? Beatrice goes shopping at her local book store for something new to read. She plucks a book off the shelf, flips it open, and reads the following excerpt:It was the harshest, most miserable winter in memory. I was certain Valley Forge would be the end of me and my fellow soldiers. My musket was full, but my water skin was empty. One mans shoes had been worn down to nothing during the march. He tied cowhides to his feet. But on he marched for the general and our Continental Army. I admired his conviction. I ignored the biting cold and continued on.Beatrice believes the story is set during the American Revolution. Which two pieces of textual evidence from the excerpt support her conclusion Food color mixes faster in warm water than in cold water. Molecules in a liquid have enough energy to move around and pass each other. This is why water can flow and take the shape of the container you pour it into. Warm water has more heat energy than cold water, which makes the molecules in warm water move faster than molecules in cold water. The food coloring you add to the water is pushed around by the water molecules. Since the molecules in warm water move around faster, the food coloring spreads out quicker in the warm water than in the cold water. If you buy three of the ABC bonds with $10 commission for each, how much will it cost? a. $3142.50 b. $1047.50 c. $3172.50 d. $1077.50 Can someone plz help me? Plz Im begging! :( In ferns, the sporophyte produces A. cones, which grow into a gametophyte. B. gametes, which grow into a gametophyte. C. spores, which grow into a gametophyte. D. seeds, which grow into a gametophyte. During the 1960s, a federal civil rights act became necessary becausea. the president did not support civil rights.b. it was the only way to end Jim Crow laws.c. Northern states had passed different civil rights laws.d. Southern states had ended discrimination. determining end behavior and intercepts to graph a polynomial function In a paragraph of at least five sentences, answer the question: do you agree with picasso's claim that "the urge to destroy is also a creative urge"? include at least one specific reference to each excerpt in your response. Supportive relationships and frequent, positive interactions with others builds your __________. What is the range of y=3sin(x)? A community swimming pool is a rectangular prism that is 30 feet long, 12 feet wide, and 5 feet deep. The wading pool is half as long, half as deep, and the same width as the larger pool.How many times greater is the volume of the swimming pool than the volume of the wading pool?Enter your answer as a number, like this: 42HELLLLPPPP PLEASEEEE Which of the following correctly pairs the scientist who first created a theory with thescientist who proved that theory?O Nicolaus Copernicus and Isaac NewtonO Nicolaus Copernicus and Galileo GalileiO Isaac Newton and Charles DarwinO Galileo Galilei and Charles Darwin Which organization offers certification examinations for the National Certified Medical Assistant and National Certified Medical Office Assistant someone is looking after baby in passive voice Find the value of sin D rounded to the nearest hundredth, if necessary. Eugene is purchasing clothing to make different outfits. Each outfit consists of a top, a bottom and a pair of shoes. Eugene found 2 pairs of shoes and 4 bottoms he would like to purchase. What is the minimum number of tops Eugene needs to purchase to make at least 35 different outfits? Express your answer as a whole number. Simplify the complex number.(8i) (5) (-4-6i) 6. Which of the following could cause a change in the demand curve?A. There is a change in price.B. There is a change in quantity.C. There is a change in the population consuming the good.D. None of the above.