Answer: A. 100%
Step-by-step explanation:
witch is equivalent to 3x+5+7x+2
1. 17
2. 15x+2
3.10x+7
4. 17x
Answer:
option 3
Step-by-step explanation:
Given
3x + 5 + 7x + 2 ← collect like terms
= (3x + 7x) + (5 + 2)
= 10x + 7 → option 3
According to the question
=3x + 5+7x + 2
Combining Like terms
= (3x + 7x) +(5+2)
= 12x + 7
Therefore the correct option is third
10x + 7
Answered by Gauthmath must click thanks and mark brainliest
The quantity of milk consumed in five households in a week is 10L.12.13 L. 11 L and
14 L Find the mean weekly consumption of milk by these bouseholds. Also find the number
of households whose consumption is more than the mean weekly consumption
Answer:
12
Step-by-step explanation:
Add 10l to 12l to13l to11l to 14l=60l the divide 60l by the number of houses which will be 12 and there is your correct answer
Need help ASAP 3(9+9b)=69+136
Answer:
b=3
Step-by-step explanation:
Isolate the variable by dividing each side by factors that don't contain the variable.
Answer:
b = 3
Step-by-step explanation:
3(9+9b)=69+136
27+27b = 205
27b = 205-27
27b = 178
b = 178/27
*slaps face*
In the comments you said the "136" is "13b" so ok...
3(9+9b)=69+13b
27+27b = 69 + 13b
27+14b = 69
14b = 69-27
14b = 42
b = 3
find the slope and Y_intercept of the line 3x+y-9=0
Answer:
slope: -3
y-intercept: 9
Step-by-step explanation:
To find the slope and y-intercept, we can manipulate the equation to slope-intercept form. Slope-intercept form is y=mx+b where m is slope and b is y-intercept.
[tex]3x+y-9=0[/tex] [subtract both sides by 3x]
[tex]y-9=-3x[/tex] [add both sides by 9]
[tex]y=-3x+9[/tex]
Now, our equation is in slope-intercept form. We can see that the slope is -3 and the y-intercept is 9.
***CAN SOMEONE HELP ME PLEASE!!***
The polygon in each pair are similar. Find the missing side length
Answer:
45 / 27 = 30 / 18 = x / 24
x = 40
Step-by-step explanation:
Hi there!
The question here states that the two polygons are similar
Polygons that are similar have similar side length ratios.
If we want to find a side length we must create a proportional relationship
We are already given a partial proportional relationship.
Which is...
45 / __ = __ / 18 = x / __
First let's fill in the blanks
The side that is corresponding to the side with a length of 45 has a length of 27. So it would be 45/27
The side that is corresponding to the side with a length of 18 has a length of 30. So it would be 30/18
The side corresponding to side labeled "x" has a length of 24. so it would be x/24
So we would have
45 / 27 = 30 / 18 = x / 24
Now let's find x
We only need 2 ratios ( the one including x of course, and the other one can either be 30/18 or 45/27)
30 / 18 = x / 24
Now let's solve for x
Cross multiply
30*24=720
18*x=18x
We now have 18x = 720
Divide both sides by 18
18x / 18 = x
720 / 18 = 40
x = 40
To check our answers we can see if the ratios are similar
If they are then we are correct
45/27 = 1.66
30/18 =1.66
40/24 = 1.66
They are all equivalent meaning that our answers are correct
what is the simplification of 9^8 / 9^7?
Answer:
9
Step-by-step explanation:
We know that a^b / a^c = a^(b-c)
9^8 / 9^7
9^(8-7)
9^1
9
Pls help!! find the area of the shaded region.
Answer:
134.1
Step-by-step explanation:
Area of the circle = 49π = 153.9 (rounded to the nearest tenth)
Segment area,
49/2(150π/360-sin(150))
= 19.8 (rounded to the nearest tenth)
Subtracting them,
153.9-19.8
= 134.1 cm²
Answered by GAUTHMATH
The area of the shaded region is 134.1 cm²
What is a segment of a circle?
'A segment of a circle is the region that is bounded by an arc and a chord of the circle.'
According to the given problem,
Area of the circle = πr²
= π × 7 × 7 cm²
= 153.9 (rounded to the nearest tenth)
Area of the Shaded region,
= [tex]\frac{r^{2} }{2}( \frac{angle in degrees * \pi }{360 - sin(angle in degrees)} )[/tex]
=[tex]\frac{49}{2}(\frac{150\pi }{360 - sin(150)})[/tex]
= 19.8 (rounded to the nearest tenth)
Subtracting them,
= 153.9 - 19.8
= 134.1 cm²
Hence, we can conclude that the area of the shaded region is 134.1cm²
Learn more about segment of a circle here: https://brainly.com/question/4910703
#SPJ2
need some help with this
Answer:
1/3
Step-by-step explanation:
Slope is rise over run
your rise is 1 (because you only go up one block each time)
your run is 3 ( because you go right three times)
so 1/3
Multiply using the FOIL method:
(x + y) (x + 2)
Answer:
x^2 +2x+xy +2y
Step-by-step explanation:
(x + y) (x + 2)
FOIL
first x*x = x^2
outer x*2 =2x
inner y*x= xy
last = y*2 =2y
Add together
x^2 +2x+xy +2y
Answer:
Step-by-step explanation:
F - First ; O - Outside ; I - inside ; L -last
(x + y)(x + 2) = x*x + x*2 +y*x +y*2
= x² + 2x + xy +2y
Alec pulled a couch 3 meters, using a force of 400 N. The couch weighed 200 N. How do you calculate the work done by Alec?
A . Add 400 to 200
B . Divide 400 by 3
C . Multiply 200 by 3
D . Multiply 400 by 3
Answer:
D
Step-by-step explanation:
It is because work is done when a force cause an object to move in the direction of the applied force.
so work is equal to force × distance
Melissa will rent a car for the weekend. She can choose one of two plans. The first plan has an initial fee of 59 and costs an additional 0.15 per mile driven. The second plan has an initial fee of 50 and costs an additional 0.20 per mile driven. For what amount of driving do the two plans cost the same? What is the cost when the two plans cost the same?
Answer:
Step-by-step explanation:
Let
x = cost per mile
y = Total cost
Plan 1:
y = 59 + 0.15x
Plan 2:
y = 50 + 0.20x
Equate the total cost of the two plans
59 + 0.15x = 50 + 0.20x
59 - 50 = 0.20x - 0.15x
9 = 0.05x
x = 9/0.05
= 180
x = 180 miles
y = 50 + 0.20x
= 50 + 0.20(180)
= 50 + 36
= 86
y = 86
Function f is graphed. According to the graph, is f even, odd, or neither?
Answer:
C
Step-by-step explanation:
f is neither even nor odd
can somene explain this to me please?
Answer:
10/3
Step-by-step explanation:
rate of change = gradient
(17-7)/(6-3) = 10/3
basically difference of y values / difference of x values
5√27-2√48-5√3-√(3-2√3)2
Answer:
4√3
Step-by-step explanation:
5√27-2√48-5√3-(√3-2√3)2
= 5√(3x9)-2√(3x16)-5√3-2√3+4√3
= 5(3)√3-2(4)√3-5√3-2√3+4√3
= 15√3-8√3-5√3-2√3+4√3
= 4√3
7. In which step does a mistake first occur?
8 + 2 + (3 X 3 -2)
Step 1: 8 +2 + (3 x 1)
Step 2: 8 +2 + 3
Step 3: 4 + 3
Step 4: 7
Answer:
17
Step-by-step explanation:
8+2+(3×3-2)=8+2+(9-2)=8+2+7=17
mistake in the first step
firstly we do × and ÷
then + and -
which inequality is represented on the number line shown?
Answer: A x> -2
Step-by-step explanation:
Find the sin P rounded to the nearest hundredth
Answer:
SOH-CAH-TOA
[tex]\sin \left(x\right)=\frac{6}{\sqrt{49+36}}[/tex] = 40.60°
SOH = SIN = OPP/HYP
SIN(Θ) = 6/[tex]\sqrt{49+36 }[/tex]
Step-by-step explanation:
1) Tính a) (x+3)^2
b) (2x-1)^2
c) x^2 - 2y^2
d) ( x+2)^3
e)(x-3)^3
Answer:
1. a) x^2 + 6x + 27
b) 4x^2 - 4x + 1
c) x^2 - 4y^2
d) x^3 + 6x^2 + 12x + 8
e) x^3 - 9x^2 + 27x - 27
SEE QUESTION IN IMAGE
Answer:
46.Total number in favour:
128 + 96 = 224Probability:
P(favour, A) = 128/224 = 4/747.Total number in against:
32 + 48 = 80Probability:
P(against, not B) = 32/80 = 2/5can someone please help me out marking brainliest for a good explanation (picture)
Step-by-step explanation:
9 a = soln
3:9 = 6:n
or, 3/9 = 6/n
or, 3n = 54
or, n = 54/3
so, n = 18
b = soln
n/10 = 6/15
or, 15n = 60
or, n = 60/15
so, n= 4
10) a = 15% of 450
= 15/100 * 450
= 15/10 * 45
or, 15/2 * 9
or, 135/2
= 67.5 g
b= 125% of 60
= 125/100 * 60
= 5/4 * 60
= 5*15
= $75
The point-slope form of the equation of the line that passes through (-4,-3) and (12, 1) is y-1= 164–12). What is the standard form of the equation for this line?
Answer:
[tex]y = \frac{1}{4}x -2[/tex]
Step-by-step explanation:
Step 1: Find the standard form of the equation
The equation that was given made no sense so I will recreate the entire equation using the point slope formula.
Use the point slope formula
[tex]y - y_{1} = m(x - x_{1})[/tex]
[tex]y - (-3) = m(x - (-4))[/tex]
[tex]y +3 = m(x + 4)[/tex]
Find the slope
[tex]m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
[tex]m = \frac{1-(-3)}{12-(-4)}[/tex]
[tex]m = \frac{1+3}{12+4}[/tex]
[tex]m = \frac{4}{16}[/tex]
[tex]m=\frac{1}{4}[/tex]
Combine them together
[tex]y +3 = \frac{1}{4}(x + 4)[/tex]
Convert to standard form
[tex]y +3 = \frac{1}{4}x + 1[/tex]
[tex]y +3 - 3 = \frac{1}{4}x + 1 - 3[/tex]
[tex]y = \frac{1}{4}x -2[/tex]
Answer: [tex]y = \frac{1}{4}x -2[/tex]
Will Mark Brainlest Help please!!!
Answer:
My fellow Americans
I'm from India and I'm hre to take q look at America's Brainly :)
Answer:
I could only solve up to this this topic we will read tomorrow .I might send you tomorrow. I don't know that if the solved parts rule is right or not .If it is wrong forgive me.
Below is a histogram representing the test scores from Mrs. Jackson's 2nd period History class. How many students scored a 90 or above?
Answer:
either 5 or 6
Step-by-step explanation:
I can't have a direct answer because you didn't get all of the histogram in there, but from what I can conclude from just this there's definitely either 5 or 6.
kendra is 3 times her dauters age plus 7 years kendra is 49 years old. write an equation to find he duaghters age?
Answer:
3x+ 7 =49
Step-by-step explanation:
49-7= 42
42 divided by 3 = 14
her daughter is 14 years old
I truly hope this helped, it makes sense to me. I wasn't sure whether or not you needed a more detailed equation, but that's one.
have a great day!
can someone pls help me!! :)
Answer:
I think the answer is B
The perimeter of a rectangular plot of land whose length is (2x+5) and width is (x-10) is 80cm. Find the
i)value of x
ii) area
iii)cost of weeding the plot at GHc 0.24 per m²
Answer:
P.=2(2x+5)+2(x-10)=80cm
6x-10=80
x=90/6=15cm
Area= L*W= 35*5=175 squared cm= 0.0175 squared m
Cost= 0.24 * 0.0175 = GHc 0.0042
A parallelogram in which adjacent sides are perpendicular to each other is called a rectangle. The cost of weeding the rectangular plot is 0.0042 GHc.
What is a rectangle?That parallelogram in which adjacent sides are perpendicular to each other is called a rectangle. A rectangle is always a parallelogram and a quadrilateral but the reverse statement may or may not be true.
A.) The perimeter of a rectangular plot of land whose length is (2x+5) and width is (x-10) is 80cm. Therefore, we can write,
Perimeter of the rectangel = 2(L+W)
80 = 2[(2x+5)+(x-10)]
80/2 = 2x+5+x-10
40 = 3x -5
40+5 = 3x
x = 15
Hence, the value of x is 15.
B.) The length of the rectangle = (2x+5) = 2(15)+5 = 35 cm = 0.35 m
The width of the rectangle = (x-10) = 15-10 = 5 cm = 0.05 m
Now, the area of the rectangle = L×B = 0.35m × 0.05m = 0.0175m²
C.) Given the cost of weeding 1m² is 0.24, therefore, the cost of weeding the rectangular plot is
Cost = 0.0175 × 0.24 = 0.0042 GHc
Hence, the cost of weeding the rectangular plot is 0.0042 GHc.
Learn more about Rectangle:
https://brainly.com/question/15019502
#SPJ2
As the students were approaching the park, they noticed a huge tower that was just
being completed. Lucas and Jacob were part of the group responsible for looking at
advertising. They couldn’t help but to think, one of the main attractions of the park
would be the ride involving this tower. It was a bright, sunny day. As they got off
the bus, they collected the mathematical materials provided by their teacher. These
materials included: pencil, paper, eraser, calculator, measuring tape, a
clinometer (a tool used to measure vertical angles). They walked through the
park until they reached the shadow of the tower. They looked up and couldn’t
believe how high it was
Q: If they are going to advertise, the height of the tower in a brochure that is
being created, they want to be sure of their answer. Describe how they
could use the materials they have and trigonometry to determine the
height of the tower. The explanations should include a detailed diagram,
clear step by step instructions making use of terminology appropriately
and even examples showing the calculations to be used to determine
the height.
The students could use what they know of triangle rectangles, in the image below you can see the diagram that the students could use to estimate the height of the tower.
First, the students could use the measuring tape to find the distance between the base of the tower and them, this distance is represented with the variable S in the image below.
Now, using the clinometer, they could find the elevation angle between their viewpoint and the tip of the tower. This would be the angle θ in the image (notice that they should do this from the ground).
So at this point, we know one angle and the adjacent cathetus to that angle.
And we want to find the height of the tower, which is the opposite cathetus to the known angle.
Then we can remember the trigonometric relation:
tan(a) = (opposite cathetus)/(adjacent cathetus)
Replacing these by the things we know:
tan(θ) = H/S
tan(θ)*S = H
Then, by measuring θ and S, we can find the height.
If you want to read more about triangle rectangles, you can see:
https://brainly.com/question/16893462
factorize:
a)x³-3x²+2x-6-xy+3y
b)mn-mx-n+x
[tex]\displaystyle \Large \boldsymbol{} a) \ \underline{x^2-3x}+\underline{2x-6}-\underline{xy+3y}=\\\\\\x(x-3)+2(x-3)-y(x-3)=\boxed{(x-3)(x-y+2)} \\\\\\b) \ mn-mx-n+x=m(n-x)-(n-x) =\boxed{ (m-1)(n-x)}[/tex]
Same promblem as first but different angles
If two parallel lines are intersected by a transversal, then internal opposite angles are equal.
So, x° = 61°
=> x = 60
Because they are internal opposite angles.
The equation a[tex]x^{2}[/tex]+b[tex]x[/tex]+c=0 has roots α, β. Express (α+1)(β+1) in terms of a, b and c.
Answer:
[tex]\displaystyle \left(\alpha+1\right)\left(\beta + 1\right) = \frac{a+c-b}{a}\:\: \left(\text{ or } 1+\frac{c-b}{a}\right)[/tex]
Step-by-step explanation:
We are given the equation:
[tex]ax^2+bx+c=0[/tex]
Which has roots α and β.
And we want to express (α + 1)(β + 1) in terms of a, b, and c.
From the quadratic formula, we know that the two solutions to our equation are:
[tex]\displaystyle x_1 = \frac{-b+\sqrt{b^2-4ac}}{2a}\text{ and } x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}[/tex]
Let x₁ = α and x₂ = β. Substitute:
[tex]\displaystyle \left(\frac{-b+\sqrt{b^2-4ac}}{2a} + 1\right) \left(\frac{-b-\sqrt{b^2-4ac}}{2a}+1\right)[/tex]
Combine fractions:
[tex]\displaystyle =\left(\frac{-b+2a+\sqrt{b^2-4ac}}{2a} \right) \left(\frac{-b+2a-\sqrt{b^2-4ac}}{2a}\right)[/tex]
Rewrite:
[tex]\displaystyle = \frac{\left(-b+2a+\sqrt{b^2-4ac}\right)\left(-b+2a-\sqrt{b^2-4ac}\right)}{(2a)(2a)}[/tex]
Multiply and group:
[tex]\displaystyle = \frac{((-b+2a)+\sqrt{b^2-4ac})((-b+2a)-\sqrt{b^2-4ac})}{4a^2}[/tex]
Difference of two squares:
[tex]\displaystyle = \frac{\overbrace{(-b+2a)^2 - (\sqrt{b^2-4ac})^2}^{(x+y)(x-y)=x^2-y^2}}{4a^2}[/tex]
Expand and simplify:
[tex]\displaystyle = \frac{(b^2-4ab+4a^2)-(b^2-4ac)}{4a^2}[/tex]
Distribute:
[tex]\displaystyle = \frac{(b^2-4ab+4a^2)+(-b^2+4ac)}{4a^2}[/tex]
Cancel like terms:
[tex]\displaystyle = \frac{4a^2+4ac-4ab}{4a^2}[/tex]
Factor:
[tex]\displaystyle =\frac{4a(a+c-b)}{4a(a)}[/tex]
Cancel. Hence:
[tex]\displaystyle = \frac{a+c-b}{a}\:\: \left(\text{ or } 1+\frac{c-b}{a}\right)[/tex]
Therefore:
[tex]\displaystyle \left(\alpha+1\right)\left(\beta + 1\right) = \frac{a+c-b}{a}[/tex]