Answer:
Option B. 300 m/s².
Explanation:
From the question given above, the following data were obtained:
Mass (m) of student = 100 Kg
Mass (m) of ball = 1.5 Kg
Force (F) applied on the ball = 450 N
Acceleration (a) of ball =?
From Newton's 2nd law,
F = ma
Where
F => Force applied
m => mass of object
a => acceleration of object.
With the above formula, we can obtain the acceleration of the ball as follow:
Mass (m) of ball = 1.5 Kg
Force (F) applied on the ball = 450 N
Acceleration (a) of ball =?
F = ma
450 = 1.5 × a
Divide both side by 1.5
a = 450 / 1.5
a = 300 m/s²
Therefore, the acceleration of the ball is 300 m/s²
Meandering valleylike features on the Moon's surface are called
Answer:
Meandering valley like features on the Moon's surface are called rilles
Explanation:
NOUN
rilles (plural noun)
a fissure or narrow channel on the moon's surface.
2. A force of 10 N is applied to an object which accelerates at a rate of 2m/s2. What is the mass
of the object?
(10 Points)
10 kg
5 kg
2 kg
20 kg
Q4. What is the speed of light in a block of glass that
has an Index of refraction of 1.11?
PLEASE HELP GIVING BRAINLIEST ANSWER
Explain why your PE and KE are usually not both high at the same time (If PE is high then usually KE is low)
A laser positioned on a ship is used to communicate with a small two man research submarine resting on the bottom of a lake. The laser is positioned 12 m above the surface of the water, and it strikes the water 20 m from the side of the ship. The water is 76 m deep and has an index of refraction of 1.33. How far is the submarine from the side of the ship
Answer:
84.1 m
Explanation:
Given :
The distance from the ship to submarine :
20 + y
Using Pythagoras :
Tan θ = opposite / Adjacent
Tan θ = 20 / 12
12 tan θ = 20
θ = tan^-1(20/12)
20
θ = 59.036°
The angle phi;
n1sinθ1 = n2sin θ
Sin 59.036 = 1.33 * sin phi
Sin phi = sinsin(59.04) ÷1.33
0.8574907 = 1.33 * sin phi
Sin phi = 0.8574907 / 1.33
Sin phi = 0.6447298
phi = sin(0.6447298
Phi = 40.15°
From Pythagoras :
y = 76tan40.15°
y = 76 * 0.8435707
y = 64.11
20 + y
20 + 64.11 = 84.11
Bungee jumping is an example of
A. wind resistance and insanity
B. gravitational and air pressure energy
C. gravitational and elastic energy
Does fg increase or decrease when one mass increases
Answer:
It increases because fg means Force of gravity so When the mass of the two objects increases with mass and increases the distance between an object
There you go!!!
A 7300 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.20 m/s2 and feels no appreciable air resistance. When it has reached a height of 575 m , its engines suddenly fail so that the only force acting on it is now gravity. Part A What is the maximum height this rocket will reach above the launch pad
Answer:
Explanation:
We shall first calculate the velocity at height h = 575 m .
acceleration a = 2.2 m /s²
v² = u² + 2 a s
u is initial velocity , v is final velocity , s is height achieved
v² = 0 + 2 x 2.2 x 575
v = 50.3 m /s
After 575 m , rocket moves under free fall so g will act on it downwards
If it travels further by height H
from the relation
v² = u² - 2 g H
v = 0 , u = 50.3 m /s
H = ?
0 = 50.3² - 2 x 9.8 H
H = 129.08 m
Total height attained by rocket
= 575 + 129.08
= 704.08 m .
3. If the gravitational force between 2 objects is 50 N, what is the gravitational
force when the distance between the two is increased to four times the distance?
The gravitational force : 3.125 N
Further explanationGiven
F₁ = 50 N
Required
F₂
Solution
Newton's Gravity Law:
[tex]\rm F=G.\dfrac{m_1.m_2}{r^2}[/tex]
with F = gravitational force,
G = gravitational constant,
m1, m2 = mass of object,
r = distance between two objects.
The value of m and G are the same , so :
F₁ ≈ 1/r₁²
The distance between the two is increased to four times:
r₂ = 4r₁
F₂ = 1/(4r₁)²
F₂ = 1/16r₁²
F₂ = F₁ x 1/16
F₂ = 50 : 16
F₂ = 3.125 N
Explain why your PE and KE are usually not both high at the same time (If PE is high then usually KE is low)
PLEASE HELP! THIS IS TO BE TURNED IN IN ABOUT 3 MINUTES!!!!!!!
How must the net force be acting on an object in order for the object to have a circular motion? What is this type of force called?
Electric and gravitational forces have many similar features because they follow idenitical mathematical formulas. In particular,________ in electricity plays the equivalent role of mass in gravity, while_______ , plays a role corresponding to free-fall acceleration. Because of this kinematics describing projectiles in gravity would carry over to electricity, but the main difference is that in electricity we have__________ , while in gravity mass is always positive, which means gravity is_______ , but electricity________ .
Answer:
Electric and gravitational forces have many similar features because they follow idenitical mathematical formulas. In particular, Charge in electricity plays the equivalent role of mass in gravity, while electric field, plays a role corresponding to free-fall acceleration. Because of this kinematics describing projectiles in gravity would carry over to electricity, but the main difference is that in electricity we have positive and negative charges, while in gravity mass is always positive, which means gravity is always attractive, but electricity could be attractive and repulsive.
Explanation:
The formulas of Electric and gravitational fields are as follow
Electric Field
F(electric)=kq1q2/r^2
Gravitationlal Fieeld
F(grav)=GMm/r^2
As you see both follow the inverse square law in the formula
Both of these act between two bodies without having any contact. The gravitational field acts on the mass of an object Whereas the electric field acts on the charge.
The gravitational field can only attractive while the electric field can be attractive or repulsive.
Normally electric field is stronger than the gravitational field.
In particular, Charge in electricity plays the equivalent role of mass in gravity, while electric field,
What is gravitational force?Newton's law of gravity states that each particle having mass in the universe attracts each other particle with a force known as the gravitational force.
Gravitational force is proportional to the product of the masses of the two bodies and inversely proportional to the square of their distance.
Electric and gravitational forces have many similar features because they follow identical mathematical formulas.
In particular, Charge in electricity plays the equivalent role of mass in gravity, while electric field,
Plays a role corresponding to free-fall acceleration. Because of these kinematics describing projectiles in gravity would carry over to electricity,
but the main difference is that in electricity we have positive and negative charges, while in gravity mass is always positive,
which means gravity is always attractive, but electricity could be attractive and repulsive.
Hence, in particular, Charge in electricity plays the equivalent role of mass in gravity, while electric field,
To learn more about the gravitational force refer to the link;
https://brainly.com/question/24783651
A hanging wire made of an alloy of titanium with diameter 0.05 cm is initially 2.7 m long. When a 15 kg mass is hung from it, the wire stretches an amount 1.68 cm. A mole of titanium has a mass of 48 grams, and its density is 4.54 g/cm3. Based on these experimental measurements, what is Young's modulus for this alloy of titanium
Answer:
Explanation:
Young's modulus of elasticity Y = stress / strain
stress = force / cross sectional area
= weight of 15 kg / π r²
= 15 x 9.8 / 3.14 x ( .025 x 10⁻² )²
stress = 74.9 x 10⁷ N / m²
strain = Δ L / L , Δ L is change in length and L is original length
Putting the values
strain = .0168 / 2.7 =.006222
Young's modulus of elasticity Y = 74.9 x 10⁷ / .006222
= 120.88 x 10⁹ N / m² .
How does earths magnetic field work
Answer: On Earth, flowing of liquid metal in the outer core of the planet generates electric currents. The rotation of Earth on its axis causes these electric currents to form a magnetic field which extends around the planet.
Explanation:
Answer:
the rotation of earth on its axis causes electric currents to form a magnetic field which extends around the planet
Analyze the data to identify the mathematical relationship between the
amplitude and energy of a mechanical wave. If mechanical wave A has an
amplitude of 4 cm and mechanical wave B has an amplitude of 5 cm, what
will be the relationship between the energy carried by the two waves?
Amplitude
Energy
A. Wave A has about 1.25 times more energy than wave B.
ОО
B. Wave A has about 1.6 times more energy twan wave B.
C. Wave B has about 1.6 times more energy than wave A.
O D. Wave A has about 1.15 times more energy than wave B.
Answer:
Its C
Explanation:
Because I got it wrong for you
Wave B has about 1.6 times more energy than wave A.
What is energy?
Energy is the ability or capability to do tasks, such as the ability to move an item (of a certain mass) by exerting force. Energy can exist in many different forms, including electrical, mechanical, chemical, thermal, or nuclear, and it can change its form.
The amplitude and energy of a mechanical wave. If mechanical wave A has an amplitude of 4 cm and mechanical wave B has an amplitude of 5 cm wave B has about 1.6 times more energy than wave A.
Wave B has about 1.6 times more energy than wave A.
To learn more about energy refer to the link:
brainly.com/question/1932868
#SPJ5
The planet Mars is host to five functioning spacecraft, three in orbit about the planet and two on the surface of the planet. Thanks to those spacecraft, we know that the planet Mars has a mass that is 0.11 times that of Earth and a radius that is 0.53 times that of Earth. The acceleration of an object in free-fall near the surface of Mars is most nearly what in terms of the local value of g on Earth
Answer:
0.392
Explanation:
Mm = 0.11Me
Rm = 0.53Re
g = GM / r^2
G = 6.67 * 10^-11
gmars = (G * 0.11Me) / (0.53Re)^2
Recall:
gearth = GMe /Re^2
Hence, gmars in terms of gearth equals
gmars = gearth * (0.11 / 0.53^2)
gmars = gearth * 0.3915984
gmars = 0.392gearth
What is the potential energy of an object 20 m in the air with a
mass of 600 kg?
Answer:
Ep = 117600 J
Explanation:
Data:
Mass (m) = 600 kgHeight (h) = 20 mGravity (g) = 9.8 m/s²Potential Energy (Ep) = ?Use formula:
Ep = m * g * hReplace:
Ep = 600 kg * 9.8 m/s² * 20 mMultiply operations, and units:
Ep = 117600 JWhat is the potential energy?
The potential energy is 117600 Joules.
6th grade science I mark as brainliest !
A helicopter is hovering at a constant height of 35 m. The upward lift force on the helicopter is 85500. What is the weight of the helicopter
What does the word quantum mean?
Answer:
a required or allowed amount, especially an amount of money legally payable in damages.
OR
In physics it means a discrete quantity of energy proportional in magnitude to the frequency of the radiation it represents.
Explanation:
Why can’t a real machine ever have 100% efficiency
Answer:
Almost all machines require energy to offset the effects of gravity, friction, and air/wind resistance. Thus, no machine can continually operate at 100 percent efficiency.
From the Water in each of the next move
Please answer the question
Answer:
D
Explanation:
He walked a shorter distance, she walked a longer distance but got that wing thingies
The number of complete wavelengths that pass a point in a given time is referred to as...
A. Wavelength
B. Frequency
C. Amplitude
D. Reflection
A ball of mass 0.3 kg flies through the air at low speed, so that air resistance is negligible. (a) What is the net force acting on the ball while it is in motion
Answer:
X axis F=0
Y axis Fg = - 2.94 j ^
Explanation:
The motion of a ball in air where the air residence is indicated to be negligible can be analyzed using Newton's second law.
We set a reference system, where the x-axis is horizontal and the y-axis vertical.
X axis
There are no forces on this axis, therefore the ball goes at constant speed.
Force is zero
Y axis
In this axis it is subjected to the acceleration of gravity that creates a force equal to the weight of the body, in a vertical direction.
Fg = m g
Fg = 0.3 9.8
Fg = 2.94 N
Fg = - 2.94 j ^
the boold are vectors; negative sign indicates that the force eta directed vertically downward
hmu if u brave shawtys
Answer:
BET, & done ✌
Answer:
boop
Explanation:
a 90 kilogram dog runs across the dog park at a speed of 6.5 meters per second. what is the magnitude and direction of the average force required to stop the dog in .85 seconds?
Answer:
am not sure about the answer
Explanation:
you need to find out the amount of force it's going in for example 10n or 100n then you need to times it the distance then devide by the time
3. A car has a mass of 1,000 kilograms. If a net force of 2,000 N is exerted on the car, what is its acceleration?
Answer:
2 m/s^2
Explanation:
Acceleration = Force/mass
= 2,000/1,000
= 2
which is the product of cellular respiration? A. ATTP B. light C. oxygen D.sugar
Suppose a car is traveling at 22.8 m/s, and the driver sees a traffic light turn red. After 0.404 s has elapsed (the reaction time), the driver applies the brakes, and the car decelerates at 9.00 m/s2. What is the stopping distance of the car, as measured from the point where the driver first notices the red light?
Answer:
38.09 m
Explanation:
We'll begin by calculating the distance travelled by the car during the reaction time. This can be obtained as follow:
Reaction time (tᵣ) = 0.404 s
Initial velocity (u) = 22.8 m/s,
Distance travelled during the reaction time (sᵣ) =?
sᵣ = utᵣ
sᵣ = 22.8 × 0.404
sᵣ = 9.21 m
Next, we shall determine the distance travelled by the car when the brake was applied. This can be obtained as follow:
Initial velocity (u) = 22.8 m/s
Acceleration (a) = –9 m/s² (since the car is decelerating)
Final velocity (v) = 0 m/s
Distance travelled when the brake was applied (s₆) =?
v² = u² + 2as₆
0² = 22.8² + (2 × –9 × s₆)
0 = 519.84 – 18s₆
Collect like terms
0 – 519.84 = –18s₆
–519.84 = –18s₆
Divide both side by –18
s₆ = –519.84 / –18
s₆ = 28.88 m
Finally, we shall determine the stopping distance of the car, as measured from the point where the driver first notices the red light. This can be obtained as follow:
Distance travelled during the reaction time (sᵣ) = 9.21 m
Distance travelled when the brake was applied (s₆) = 28.88 m
Stopping distance =?
Stopping distance = sᵣ + s₆
Stopping distance = 9.21 + 28.88
Stopping distance = 38.09 m