Helen’s father’s car can travel an average of 18.5 miles on 1 gallon of gasoline. Gas at the local station costs $3.79 per gallon.

a) Helen’s mom took the car to the gas station and hand the cashier a $10 bill. How much gas could she buy? Round your answer to the nearest hundredth of a gallon.

Answers

Answer 1

9514 1404 393

Answer:

  2.64 gallons

Step-by-step explanation:

Each gallon costs $3.79, so the number of gallons that can be bought with $10 is ...

  $10/($3.79/gal) = (10/3.79) gal ≈ 2.6385 gal ≈ 2.64 gallons


Related Questions

A rational expression is​ _______ for those values of the​ variable(s) that make the denominator zero.

Answers

9514 1404 393

Answer:

  undefined

Step-by-step explanation:

A rational expression is undefined when its denominator is zero.

Find hypotenuse,perpendicular and base​

Answers

Answer:

Hypotenuse = XY = 17 cm

Base = YZ = 15 cm

Perpendicular = XZ = 8 cm

Triangles ABC and DEF are similar. Find the
perimeter of triangle DEF.
a. 34.7 cm
b. 25.3 cm
c. 15 cm
d. 38 cm
Please show work to help me understand.

Answers

If Both triangles are similar the ratio of sides will be same

[tex]\\ \sf\longmapsto \dfrac{AB}{AC}=\dfrac{DE}{DF}[/tex]

[tex]\\ \sf\longmapsto \dfrac{8}{10}=\dfrac{12}{DF}[/tex]

[tex]\\ \sf\longmapsto 8DF=120[/tex]

[tex]\\ \sf\longmapsto DF=\dfrac{120}{8}[/tex]

[tex]\\ \sf\longmapsto DF=15cm[/tex]

Now

[tex]\\ \sf\longmapsto Perimeter=DF+DE+EF[/tex]

[tex]\\ \sf\longmapsto Perimeter=15+11+12[/tex]

[tex]\\ \sf\longmapsto Perimeter=38cm[/tex]

I need help in understanding and solving quadratic equations using the quadratic formula

x^2+8x+1=0​

Answers

Answer:

Exact Form: -4⊥√15

Decimal Form:

0.12701665

7.87298334

Solve 3(5x + 7) = 9x + 39.
O A. X=-3
B. X= -10
O c. x = 10
O D. x= 3

Answers

Answer:

x=3

Step-by-step explanation:

3(5x + 7) = 9x + 39

15x + 21 = 9x + 39

15x - 9x = 39 - 21

6x = 18

x = 3

Which equation has a graph that is a parabola with a vertex at (-2, 0)?
y= -2x^2
y = (x + 2)^2
y= (x – 2)^2
y= x^2 – 2

Answers

y=(x+2)^2 has a vertex at (-2,0)

Of the respondents, 502 replied that America is doing about the right amount. What is the 95 % confidence interval for the proportion of all American adults who feel that America is doing about the right amount to protect the environment?

Answers

Answer:

The 95 % confidence interval for the proportion of all American adults who feel that America is doing about the right amount to protect the environment is (0.461, 0.543), considering [tex]n = 1000[/tex]

Step-by-step explanation:

Incomplete question, so i will suppose this is a sample of 1000.

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].

Of the n respondents, 502 replied that America is doing about the right amount.

Supposing [tex]n = 1000[/tex], so [tex]\pi = \frac{502}{1000} = 0.502[/tex]

95% confidence level

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].  

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.502 - 2.575\sqrt{\frac{0.502*0.498}{1000}} = 0.461[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.502 + 2.575\sqrt{\frac{0.502*0.498}{1000}} = 0.543[/tex]

The 95 % confidence interval for the proportion of all American adults who feel that America is doing about the right amount to protect the environment is (0.461, 0.543), considering [tex]n = 1000[/tex]

[tex]\int\limits^a_b {(1-x^{2} )^{3/2} } \, dx[/tex]

Answers

First integrate the indefinite integral,

[tex]\int(1-x^2)^{3/2}dx[/tex]

Let [tex]x=\sin(u)[/tex] which will make [tex]dx=\cos(u)du[/tex].

Then

[tex](1-x^2)^{3/2}=(1-\sin^2(u))^{3/2}=\cos^3(u)[/tex] which makes [tex]u=\arcsin(x)[/tex] and our integral is reshaped,

[tex]\int\cos^4(u)du[/tex]

Use reduction formula,

[tex]\int\cos^m(u)du=\frac{1}{m}\sin(u)\cos^{m-1}(u)+\frac{m-1}{m}\int\cos^{m-2}(u)du[/tex]

to get,

[tex]\int\cos^4(u)du=\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{4}\int\cos^2(u)du[/tex]

Notice that,

[tex]\cos^2(u)=\frac{1}{2}(\cos(2u)+1)[/tex]

Then integrate the obtained sum,

[tex]\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int\cos(2u)du+\frac{3}{8}\int1du[/tex]

Now introduce [tex]s=2u\implies ds=2du[/tex] and substitute and integrate to get,

[tex]\frac{3\sin(s)}{16}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int1du[/tex]

[tex]\frac{3\sin(s)}{16}+\frac{3u}{4}+\frac{1}{4}\sin(u)\cos^3(u)+C[/tex]

Substitute 2u back for s,

[tex]\frac{3u}{8}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\sin(u)\cos(u)+C[/tex]

Substitute [tex]\sin^{-1}[/tex] for u and simplify with [tex]\cos(\arcsin(x))=\sqrt{1-x^2}[/tex] to get the result,

[tex]\boxed{\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C}[/tex]

Let [tex]F(x)=\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C[/tex]

Apply definite integral evaluation from b to a, [tex]F(x)\Big|_b^a[/tex],

[tex]F(x)\Big|_b^a=F(a)-F(b)=\boxed{\frac{1}{8}(a\sqrt{1-a^2}(5-2a^2)+3\arcsin(a))-\frac{1}{8}(b\sqrt{1-b^2}(5-2b^2)+3\arcsin(b))}[/tex]

Hope this helps :)

Answer:[tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}[/tex]General Formulas and Concepts:

Pre-Calculus

Trigonometric Identities

Calculus

Differentiation

DerivativesDerivative Notation

Integration

IntegralsDefinite/Indefinite IntegralsIntegration Constant C

Integration Rule [Reverse Power Rule]:                                                               [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                    [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

U-Substitution

Trigonometric Substitution

Reduction Formula:                                                                                               [tex]\displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx[/tex]

Step 2: Integrate Pt. 1

Identify variables for u-substitution (trigonometric substitution).

Set u:                                                                                                             [tex]\displaystyle x = sin(u)[/tex][u] Differentiate [Trigonometric Differentiation]:                                         [tex]\displaystyle dx = cos(u) \ du[/tex]Rewrite u:                                                                                                       [tex]\displaystyle u = arcsin(x)[/tex]

Step 3: Integrate Pt. 2

[Integral] Trigonometric Substitution:                                                           [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du[/tex][Integrand] Rewrite:                                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du[/tex][Integrand] Simplify:                                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du[/tex][Integral] Reduction Formula:                                                                       [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b[/tex][Integral] Simplify:                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du[/tex][Integral] Reduction Formula:                                                                          [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex][Integral] Simplify:                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex][Integral] Reverse Power Rule:                                                                     [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg][/tex]Simplify:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b[/tex]Back-Substitute:                                                                                               [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b[/tex]Simplify:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b[/tex]Rewrite:                                                                                                         [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b[/tex]Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              [tex]\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

I need help answering this question thank guys

Answers

Multiply exponents: 1/6 x 6 = 1
You get: 12^1 which = 12
The answer for this question is D. 12


A car is advertised with a price of $16336. The payment plan to own a car is $474 per month for 8 years. What is the
amount of interest paid?

Answers

The interest rate is about 32.045%.

Line JK passes through points J(–3, 11) and K(1, –3). What is the equation of line JK in standard form?

7x + 2y = –1
7x + 2y = 1
14x + 4y = –1
14x + 4y = 1

Answers

9514 1404 393

Answer:

  (b) 7x + 2y = 1

Step-by-step explanation:

You don't need to know how to find the equation. You just need to know how to determine if a point satisfies the equation. Try one of the points and see which equation fits. (The numbers are smaller for point K, so we prefer to use that one.)

  7(1) +2(-3) = 1 ≠ -1 . . . . . tells you choice A doesn't work, and choice B does

The equation is ...

  7x +2y = 1

__

Additional comment

The equations of choices C and D have coefficients with a common factor of 2. If the constant also had a factor of 2, we could say these equations are not in standard form, and we could reject them right away. Since the two points have integer values for x and y, we can reject these equations anyway: the sum of even numbers cannot be odd.

Answer:

b

Step-by-step explanation:

data
find the range between 14, 15, 16, 14,23,13
15, 24, 12, 23, 14; 20, 17, 21, 22, 1031, 19, 20,
17, 16, 15, 11, 12, 21, 20, 17, 18, 19, 23

Answers

the lowest is 11 and the highest is 1031 then subtract it you are going to have 1020

Answer pleaseeeeeeee

Answers

Answer:

17x^2-9x-9 -->B

Step-by-step explanation:

7x^2 -12x +3 +10x^2+3x-12

Put the following equation of a line into slope-intercept form, simplifying all
fractions.
3x + 6y = -42

Answers

Answer:

y = -1/2x -7

Step-by-step explanation:

3x + 6y = -42

Slope intercept form is

y = mx+b where m is the slope and b is the y intercept

Subtract 3x from each side

3x-3x+6y = -3x-42

6y = -3x-42

Divide each side by 6

6y/6 = -3x/6 - 42/6

y = -1/2x -7

Can someone help me find the answer?

Answers

Answer:

a. x = 3/a

Step-by-step explanation:

Add all like terms on left hand side of the equation:

5 ax + 3 ax => 8 ax

Bring like term 4ax on left hand side

8ax - 4ax

=> 4ax

Therefore we get 4ax = 12

ax = 12/4

ax = 3

x = 3/a



Write –0.38 as a fraction.

Answers

Answer:

-19/50

Step-by-step explanation:

Answer:

-19/50

Step-by-step explanation:

Find the slope of the line (4,0) (9,11) Help plsss!!!!

Answers

11/5 is what I got I hope it’s correct

Answer:

m= 11/5 (11 over 5)

Hope this helps! :)

The prices of paperbacks sold at a used bookstore are approximately Normally distributed, with a mean of $7.85 and a standard deviation of $1.25.


Use the z-table to answer the question.


If the probability that Joel randomly selects a book in the D dollars or less range is 56%, what is the value of D?


$4.46

$7.75

$8.04

$8.10

(C) 8.04

Answers

Answer:

The answer you want is indeed, (C).

8.04

ED2021

Answer:

C) 8.04

Step-by-step explanation:

edge 2023

write your answer in simplest radical form​

Answers

9514 1404 393

Answer:

  4√2

Step-by-step explanation:

In a 30°-60°-90° triangle, the ratio of side lengths is ...

  1 : √3 : 2

That is, the hypotenuse (c) is double the short side (2√2).

  c = 4√2

A photographer bought 35 rolls for $136.44 what was the price of one roll

Answers

Answer:

$3.90

Step-by-step explanation:

136.44/35= (rounded tot the nearest hundredth) $3.90

Answer:

136.44÷36 =3.79

3.79×36=136.44

Step-by-step explanation:

So one ball cost 3. 79

Find the area of each figure one of the sides are 8.3cm it’s a square btw

Answers

Answer:

68.89 cm

Step-by-step explanation:

8.3 X 8.3 would equal 68.89 cm. We can see that one side is 8.3 cm, and the other sides don't say their sides, so the only number we will use for multiplying is 8.3, and all sides of the square will be 8.3. The equation is L X W, where L is the length, and W is the width. Since 8.3 is on all four sides, it will also be the length and the width on the equation. As a result, 68.89 cm would be the final answer.

Answer:

I don't real know if this is right, but I think its this:

68.89 cm2 is the area.

What is the x intercept of the graph that is shown below? Please help me

Answers

Answer:

(-2,0)

Step-by-step explanation:

The x intercept is the value when it crosses the x axis ( the y value is zero)

x = -2 and y =0

(-2,0)

A square prism and a cylinder have the same height. The area of the cross-section of the square prism is 628 square units, and the area of the cross-section of the cylinder is 200π square units. Based on this information, which argument can be made?
The volume of the square prism is one third the volume of the cylinder.
The volume of the square prism is half the volume of the cylinder.
The volume of the square prism is equal to the volume of the cylinder.
The volume of the square prism is twice the volume of the cylinder.

Answers

Answer:

C. The volume of the square prism is equal to the volume of the cylinder.

Step-by-step explanation:

I took the test and it was right

.Part D. Analyze the residuals.
Birth weight
(pounds)
Adult weight
(pounds)
Predicted
adult weight
Residual
1.5
10

3
17

1
8

2.5
14

0.75
5

a. Use the linear regression equation from Part C to calculate the predicted adult weight for each birth weight. Round to the nearest hundredth. Enter these in the third column of the table.

b. Find the residual for each birth weight. Round to the nearest hundredth. Enter these in the fourth column of the table.

c. Plot the residuals.

d. Based on the residuals, is your regression line a reasonable model for the data? Why or why not? ​

Answers

Answer:

Hi there! The answers will be in the explanation :D

Step-by-step explanation:

a) I'll attach a doc for the table so it'll basically answer a and b.

c) I'll also attach the graph.

d) I'm not entirely sure for this question, but I'll do my best to answer it correctly for you. I would say no, because we can see that the residuals are all positive, but the graph we're looking is going down which means it's negative. We can also see the table is increasing a bit so it doesn't really make any sense...

Hope this helped you!

A circle P is circumscribed about a regular hexagon ABCDEF

If segment AE is drawn, triangle AEF is a/n ____________ triangle. Select one:

a. isosceles

b. scalene

c. equilateral

d. right

i’ll mark u as brainliest:))

Answers

9514 1404 393

Answer:

  a. isosceles

Step-by-step explanation:

Segments EF and FA of the hexagon are the same length, so the triangle is an isosceles triangle.

The population of a town is decreasing exponentially according to the formula
P = 7,285(0.97)t, where t is measured in years from the present date. Find the population in 2 years, 9 months. (Round your answer to the nearest whole number.)

Answers

Answer: 6669

Step-by-step explanation:

I hope I did this right... anyways,

t, is represented by years, which is given to us by 2 years and 9 months. Assuming you would put 2.9 for t.

Additionally, as you can't have a decimal for a person, and they've asked for it to be rounded to the nearest whole number, there would be 6669 people in 2 years and 9 months.

The formula used is:

[tex]7285(0.97)^2^.^9[/tex]

There are 5 members on a board of directors. If they must elect a chairperson, a secretary, and a treasurer, how many different slates of candidates are possible?

Answers

Answer:

60

Step-by-step explanation:

To begin, we can look at combinations and permutations. A permutation or combination is when we need to find how many possibilities there are to choose a certain amount of objects (in this case, candidates) given an array of options (members on the board)

Combinations are when the order doesn't matter, and permutations are when the order does matter. Here, we know that we care whether someone is chairperson or secretary. If we were to just choose three for an "elite" board, and there were no specific positions in the board, then order would not matter. However, because it does matter which person gets which role, order does matter.

Assuming that someone cannot have more than one role, we know that this is a permutation without repetition. The formula for this is

(n!) / (n-r)!, where we have to choose from n number of people and choose r number of people. We have 5 members to choose from, and 3 people to choose, making our equation

(5!) / (5-3)! = 120 / 2! = 120/2 = 60

A four digit password is a number that begins with a 3. If digits can be repeated how many possible passwords are there? show and explain your work

Answers

Answer:

The answer is 1,000

SInce the beginning number is 3 and there are ten possible numbers to put in the remaining three slots, there are exactly 1,000 possible combinations for a 3-digit code. The answer is 1,000. There are 3 rows of 10 digits. The number of combinations 10 to the thid power which is 1000 (10 * 10 * 10)

2^17+2^14 chia hết cho 9

Answers

Answer:

ABC

Step-by-step explanation:

= 2^14.2^3 +  2^14

= 2^14. (2^3 +1)

= 2^14 . 9  

Vì 2^14.9 chia hết cho 9 nên 2^17 + 2^14 chia hết cho 9

(. là dấu nhân)

Answer:

đúng

Step-by-step explanation:

For f(x) = 4x2 + 13x + 10, find all values of a for which f(a) = 7.

the solution set is ???

Answers

Answer:

f(7)=109

Step-by-step explanation:

Since f(a)=7 then you just imput 7 on each x like this f(7)=8+13(7)+10= 109

Other Questions
I need help ASAP please 7. Which factor affecting birth does sense of competition refer to? 2. Its the first time that I have ever talked to a foreigner. => I have ................................... What is occurring during the flat section of the graph below on the red arrow labeled boiling, between liquid and gas? gas (3.) OO liquid temperature solid time (minutes) O A. Heat is being absorbed, allowing particles of the liquid to overcome the atmospheric pressure. B. Heat is being absorbed, allowing particles of the liquid to overcome the vapor pressure. C. Heat is being released, allowing particles of liquid to overcome the pressure, and is why the temp does not increase. D. The temperature is no longer increasing even though heat is still being added because the heat is being absorbed to lower the melting point Need answers please Mt ngi gi tit kim 100 triu ng theo k hn gi l 1 nm. Sau 5 nm ngi ngi nhn c s tin l 153,86 triu ng. Hi li sut ngi ny gi l bao nhiu (li kp hng nm): X45454Find the value of x.A.B.3.22C. 32D. 33Save and Fyit Let 0 < a < 90Given: cos a=7/25Find: sin a and cot a What is it called (in the English subject) when the traits of an object are used to emphasise on a person's characteristic? Which industry emerged during the second industrial revolution in the late 19 century Which line from the passage best shows that Penelope is clever? Wires manufactured for use in a computer system are specified to have resistances between 0.14 and 0.16 ohms. The actual measured resistances of the wires produced by company A have a normal probability distribution with mean 0.15 ohm and standard deviation 0.005 ohm. (Round your answers to four decimal places.) (a) What is the probability that a randomly selected wire from company A's production will meet the specifications What are Mama and Beneatha doing as this scene begins? What is Walter doing? If a cell has 10 chromosomes when it begins mitosis, how many will it have immediately afterword? salini's mother's present age is 8 times salini's present age five years from now salini's age will be 1/4th of of his mother's present age what are their present ages One model of Earth's population growth is P(t)= 64/(1+11e^0.8t)where t ismeasured in years since 1990, and P is measured in years since 1990, and Pis measured in billions of people. Which of the following statements are true? Check all that apply. Each machine at a certain factory can produce 90 units per hour. The setup cost is 20 dollars for each machine and the operating cost is 26 dollars per hour (total, not 26 dollars per machine per hour). You would like to know how many machines should be used to produce 40000 units, with the goal of minimizing production costs. First, find a formula for the total cost in terms of the number of machines, n:_______ TC = ______machines for a total cost of The minimum total cost is achieved when using dollars. Solve for x.A. 1B. 5C. 3D. 12 What is the purpose of a thesis statement?It presents contrasting viewpoints of experts on the topic.It announces what the report will prove or demonstrate.It shares the writer's background knowledge about the topic.It outlines the sources included in the body of the report. NEED HELP ASAP! what is the value of the smallest of five consecutive integers if the least minus twice the greates equals -3A. -9B. -5C. -3D. 5