Choose the correct answer.

The History Activities were about​ ___ and​ ___. They were both from​ ___. One of them had a​ ___ named after him. The other had a​ ___ named after him. The work they did together on a problem they got from a​ ___ laid the foundation for probability theory.

A. ​Pascal, Decartes,​ England, graph,​ book, relative
B. ​Luniz, Kolmogrov,​ Germany, church,​ square, teacher
C. ​Fermat, Luniz,​ England, law,​ diagram, priest
D. ​Pascal, Fermat,​ France, triangle,​ theorem, gambler

Answers

Answer 1

Answer:

I say Its letter d

Step-by-step explanation:

I hope this help


Related Questions

On the first day of travel, a driver was going at a speed of 40 mph. The next day, he increased the speed to 60 mph. If he drove 2 more hours on the first day and traveled 20 more miles, find the total distance traveled in the two days.

Answers

The Total mileage is "400" and the further solution can be defined as follows:

Let t become the time he spent commuting on the first day of his vacation.

It is then calculated as [tex]t + 2[/tex].

[tex]\to 40\times(t+2) = 60(t) + 20 \\\\\to 40t+80 = 60t + 20 \\\\\to 80-20 = 60t + 40t \\\\\to 60 = 20t \\\\\to t=\frac{60}{20} \\\\\to t=\frac{6}{2} \\\\\to t= 3\\\\[/tex]

It traveled [tex]40\times (3 + 2) + 20 = 40\times 5 + 20 = 200+20=220[/tex] miles on its first day of operation.

The car traveled [tex]180\ miles[/tex] on the second day, which was [tex]60 \ miles \times 3[/tex].

So,

Total mileage= first day traveled + second day traveled [tex]= 220+ 180= 400 \miles[/tex]

Learn more:

Total distance traveled: brainly.com/question/20670144

Using a profit P1 of $5,000, a profit P2 of $4,500, and a profit P3 of $4,000, calculate a 95% confidence interval for the mean profit per customer that SoftBus can expect to obtain. (Round your answers to one decimal place.) Lower Limit Upper Limit

Answers

Answer:

Confidence Interval

Lower Limit = $4,233.3

Upper Limit = $4,766.7

With 95% confidence, the mean profit per customer that SoftBus can expect to obtain is between $4,233.30 and $4,766.7 based on the given sample data.

Step-by-step explanation:

The z-score of 95% = 1.96

             Profit         Mean      Square Root

                          Difference    of MD

P1        $5,000       $500        $250,000

P2         4,500          0              0

P3         4,000       -500         $250,000

Total $13,500                        $500,000

Mean $4,500 ($13,500/3)    $166,667 ($500,000/3)

Standard Deviation = Square root of $166,667 = 408.2

Margin of error = (z-score * standard deviation)/n

= (1.96 * 408.2)/3

= 266.7

= $266.7

Confidence Interval = Sample mean +/- Margin of error

= $4,500 +/- 266.7

Lower Limit = $4,233.3 ($4,500 - $266.7)

Upper Limit = $4,766.7 ($4,500 + $266.7)

I need help guys thanks so much

Answers

Answer: C

Step-by-step explanation:

Dogsled drivers, known as mushers, use several different breeds of dogs to pull their sleds. One proponent of Siberian Huskies believes that sleds pulled by Siberian Huskies are faster than sleds pulled by other breeds. He times 47 teams of Siberian Huskies on a particular short course, and they have a mean time of 5.2 minutes. The mean time on the same course for 39 teams of other breeds of sled dogs is 5.5 minutes. Assume that the times on this course have a population standard deviation of 1.4 minutes for teams of Siberian Huskies and 1.1 minutes for teams of other breeds of sled dogs. Let Population 1 be sleds pulled by Siberian Huskies and let Population 2 be sleds pulled by other breeds. Step 1 of 2 : Construct a 95% confidence interval for the true difference between the mean times on this course for teams of Siberian Huskies and teams of other breeds of sled dogs

Answers

Answer:

The 95% confidence interval for the true difference between the mean times on this course for teams of Siberian Huskies and teams of other breeds of sled dogs is (-0.8276, 0.2276).

Step-by-step explanation:

Before building the confidence interval, we need to understand the central limit theorem and subtraction of normal variables.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.  

Subtraction between normal variables:

When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.

Siberian Huskies:

Sample of 47, mean of 5.2 minutes, standard deviation of 1.4. So

[tex]\mu_1 = 5.2[/tex]

[tex]s_1 = \frac{1.4}{\sqrt{47}} = 0.2042[/tex]

Others:

Sample of 39, mean of 5.5 minutes, standard deviation of 1.1. So

[tex]\mu_2 = 5.5[/tex]

[tex]s_2 = \frac{1.1}{\sqrt{39}} = 0.1761[/tex]

Distribution of the difference:

[tex]\mu = \mu_1 - \mu_2 = 5.2 - 5.5 = -0.3[/tex]

[tex]s = \sqrt{s_1^2+s_2^2} = \sqrt{0.2042^2+0.1761^2} = 0.2692[/tex]

Confidence interval:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.

Now, find the margin of error M as such

[tex]M = zs[/tex]

In which s is the standard error. So

[tex]M = 1.96(0.2692) = 0.5276[/tex]

The lower end of the interval is the sample mean subtracted by M. So it is -0.3 - 0.5276 = -0.8276.

The upper end of the interval is the sample mean added to M. So it is -0.3 + 0.5276 = 0.2276

The 95% confidence interval for the true difference between the mean times on this course for teams of Siberian Huskies and teams of other breeds of sled dogs is (-0.8276, 0.2276).

There is a sales tax of S6 on an item that costs 888 before tax. The sales tax on a second item is $21. How much does the second item cost before tax?

Answers

Step-by-step explanation:

before Tax

Coast = 888

in 2ND Item = $21

• 888/21

= $42.28

I need help
With these

Answers

Answer:

"A"

Step-by-step explanation:

a+b >c

a+c>b

b+c>a

~~~~~~~~~~~~

A. T,T,T

B. T,T,F

C. T,F,T

Which expression is equivalent to
128xy
5 ? Assume x > 0 and y> 0.
2xy5
Moto
8
yax
8
BV
y
8.VY
X

Answers

Answer:

[tex]\sqrt{128x^8y^3} = 8 x^4 y \sqrt{2y}[/tex]

Step-by-step explanation:

Given

[tex]\sqrt{128x^8y^3}[/tex] --- the complete expression

Required

The equivalent expression

We have:

[tex]\sqrt{128x^8y^3}[/tex]

Expand

[tex]\sqrt{128x^8y^3} = \sqrt{128* x^8 * y^3}[/tex]

Further expand

[tex]\sqrt{128x^8y^3} = \sqrt{64 * 2* x^8 * y^2 * y}[/tex]

Rewrite as:

[tex]\sqrt{128x^8y^3} = \sqrt{64 * x^8 * y^2* 2 * y}[/tex]

Split

[tex]\sqrt{128x^8y^3} = \sqrt{64 * x^8 * y^2} * \sqrt{2 * y}[/tex]

Express as:

[tex]\sqrt{128x^8y^3} = (64 * x^8 * y^2)^\frac{1}{2} * \sqrt{2y}[/tex]

Remove bracket

[tex]\sqrt{128x^8y^3} = (64)^\frac{1}{2} * (x^8)^\frac{1}{2} * (y^2)^\frac{1}{2} * \sqrt{2y}[/tex]

[tex]\sqrt{128x^8y^3} = 8 * x^\frac{8}{2} * y^\frac{2}{2} * \sqrt{2y}[/tex]

[tex]\sqrt{128x^8y^3} = 8 * x^4 * y * \sqrt{2y}[/tex]

[tex]\sqrt{128x^8y^3} = 8 x^4 y \sqrt{2y}[/tex]

If sin x = –0.1 and 270° < x < 360°, what is the value of x to the nearest degree?

Answers

Answer:

354°15'38.99''

Step-by-step explanation:

A survey of 30-year-old males provided data on the number of auto accidents in the previous 5 years. The sample mean is 1.3 accidents per male. Test the hypothesis that the number of accidents follows a Poisson distribution at the 5% level of significance.

No. of accident No. of males
0 39
1 22
2 14
3 11
>=4 4

Required:
a. What's the Expected probability of finding males with 0 accidents?
b. What's the Expected probability of finding males with 4 or more accidents?

Answers

Answer:

0.2725

0.0431

Step-by-step explanation:

The distribution here is a poisson distribution :

λ = 1.3

The poisson distribution :

p(x) = [(e^-λ * λ^x)] ÷ x!

Expected probability of finding male with 0 accident ; x = 0

p(0) = [(e^-1.3 * 1.3^0)] ÷ 0!

p(0) = [0.2725317 * 1] ÷ 1

p(0) = 0.2725317

= 0.2725

2.)

P(x ≥ 4) = 1 - P(x < 4)

P(x < 4) = p(x = 0) + p(x. = 1) + p(x = 2) + p(x = 3)

p(x = 0) =  p(0) = [(e^-1.3 * 1.3^0)] ÷ 0! = 0.2725

p(x = 1) = p(1) = [(e^-1.3 * 1.3^1)] ÷ 1! = 0.35429

p(x = 2) = p(2) = [(e^-1.3 * 1.3^2)] ÷ 2! = 0.23029 p(x = 3) = p(3) = [(e^-1.3 * 1.3^3)] ÷ 0! = 0.09979

P(x < 4) = 0.2725 + 0.35429 + 0.23029 + 0.09979 = 0.95687

P(x ≥ 4) = 1 - 0.95687 = 0.0431

Jagroop is building a dock at his cottage. The length of the doc is 3 times the width, plus 2. Determine a simplified expression for the perimeter of the doc

Answers

Answer:

Step-by-step explanation:

Let length = y    width = x

y = 3x + 2

Perimeter = Sum of all sides (or sum of both lengths and both widths)

2y + 2x

2(3x + 2) + 2x

6x + 4 + 2x

8x + 4

how long does it take for a deposit of $900 to double at 2% compounded continuously?
how many years does it take to double ? ___ years __ days

Answers

9514 1404 393

Answer:

34.6574 years34 years, 239.94 days

Step-by-step explanation:

For continuous compounding the "rule of 69" applies. That is the doubling time can be found from ...

  t = 69.3147/r . . . . where r is the interest rate in percent.

Here, r=2, so ...

  t = 69.3147/2 = 34.6574 . . . years

That's 34 years and 240 days.

Nancy left a bin outside in her garden to collect rain water. She notices the 1/2 gallon fills 2/3 of the bin. Write and solve an equation to find the amount of water that will fill the entire bin. Show your work. Explain your answer in words.

Answers

Here we want to solve a question involving fractions, we will find that:

3/4 gallon fils the complete bin.

Ok, so we know that 1/2 gallon of water, fills 2/3 of the bin.

We want to find the total amount of water that would fill the entire bin.

So we could write an equation like:

amount of water =  amount of the bin that it fills.

Then, using the above information, we have:

1/2 gal  = 2/3 of a bin

Now we want to get at 1 on the right side, this would mean "1 bin"

Then we multiply both sides by (3/2)

(3/2)*(1/2) gal = (3/2)*(2/3) of a bin

3/4 gal = 1 bin

From this, we can conclude that (3/4) gallons of water would fill the complete bin.

If you want to learn more about algebra, you can read:

https://brainly.com/question/4837080

x = 0,75 gallons      or       x  = 3/4   gallons      The volume of the bin

The volume of the bin is: In terms of a fraction

1  =  3/3      or any unitary fraction   5/5    7/7    9/9

We will take 3/3 since we have the information that 2/3 of the volume of the bin was filled with 2/3 of a gallon

If  2/3 of the volume of the bin was filled with 1/2 gallon then we make a rule of three according to:

If     0,5  gal.         fill    2/3 of the volume of the bin   then

          x   gal         fill     3/3  ( the volume of the bin)

solving

0,5 (gal) * 3/3    =   (2/3)*x       ( The equation)

0,5*3 = 2*x

x  =  (0,5*3)/2

x = 0,75 gallons      or       x  = 3/4   gallons

use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Answers

First check the characteristic solution: the characteristic equation for this DE is

r ² - 3r + 2 = (r - 2) (r - 1) = 0

with roots r = 2 and r = 1, so the characteristic solution is

y (char.) = C₁ exp(2x) + C₂ exp(x)

For the ansatz particular solution, we might first try

y (part.) = (ax + b) + (cx + d) exp(x) + e exp(3x)

where ax + b corresponds to the 2x term on the right side, (cx + d) exp(x) corresponds to (1 + 2x) exp(x), and e exp(3x) corresponds to 4 exp(3x).

However, exp(x) is already accounted for in the characteristic solution, we multiply the second group by x :

y (part.) = (ax + b) + (cx ² + dx) exp(x) + e exp(3x)

Now take the derivatives of y (part.), substitute them into the DE, and solve for the coefficients.

y' (part.) = a + (2cx + d) exp(x) + (cx ² + dx) exp(x) + 3e exp(3x)

… = a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)

y'' (part.) = (2cx + 2c + d) exp(x) + (cx ² + (2c + d)x + d) exp(x) + 9e exp(3x)

… = (cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

Substituting every relevant expression and simplifying reduces the equation to

(cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

… - 3 [a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)]

… +2 [(ax + b) + (cx ² + dx) exp(x) + e exp(3x)]

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

… … …

2ax - 3a + 2b + (-2cx + 2c - d) exp(x) + 2e exp(3x)

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

x : 2a = 2

1 : -3a + 2b = 0

exp(x) : 2c - d = 1

x exp(x) : -2c = 2

exp(3x) : 2e = 4

Solving the system gives

a = 1, b = 3/2, c = -1, d = -3, e = 2

Then the general solution to the DE is

y(x) = C₁ exp(2x) + C₂ exp(x) + x + 3/2 - (x ² + 3x) exp(x) + 2 exp(3x)

lim ₓ→∞ (x+4/x-1)∧x+4​

Answers

It looks like the limit you want to find is

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4}[/tex]

One way to compute this limit relies only on the definition of the constant e and some basic properties of limits. In particular,

[tex]e = \displaystyle\lim_{x\to\infty}\left(1+\frac1x\right)^x[/tex]

The idea is to recast the given limit to make it resemble this definition. The definition contains a fraction with x as its denominator. If we expand the fraction in the given limand, we have a denominator of x - 1. So we rewrite everything in terms of x - 1 :

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \left(\dfrac{x-1+5}{x-1}\right)^{x-1+5} \\\\ = \left(1+\dfrac5{x-1}\right)^{x-1+5} \\\\ =\left(1+\dfrac5{x-1}\right)^{x-1} \times \left(1+\dfrac5{x-1}\right)^5[/tex]

Now in the first term of this product, we substitute y = (x - 1)/5 :

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \left(1+\dfrac1y\right)^{5y} \times \left(1+\dfrac5{x-1}\right)^5[/tex]

Then use a property of exponentiation to write this as

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \left(\left(1+\dfrac1y\right)^y\right)^5 \times \left(1+\dfrac5{x-1}\right)^5[/tex]

In terms of end behavior, (x - 1)/5 and x behave the same way because they both approach ∞ at a proportional rate, so we can essentially y with x. Then by applying some limit properties, we have

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4} = \lim_{x\to\infty} \left(\left(1+\dfrac1x\right)^x\right)^5 \times \left(1+\dfrac5{x-1}\right)^5 \\\\ = \lim_{x\to\infty}\left(\left(1+\dfrac1x\right)^x\right)^5 \times \lim_{x\to\infty}\left(1+\dfrac5{x-1}\right)^5 \\\\ =\left(\lim_{x\to\infty}\left(1+\dfrac1x\right)^x\right)^5 \times \left(\lim_{x\to\infty}\left(1+\dfrac5{x-1}\right)\right)^5[/tex]

By definition, the first limit is e and the second limit is 1, so that

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4} = e^5\times1^5 = \boxed{e^5}[/tex]

You can also use L'Hopital's rule to compute it. Evaluating the limit "directly" at infinity results in the indeterminate form [tex]1^\infty[/tex].

Rewrite

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \exp\left((x+4)\ln\dfrac{x+4}{x-1}\right)[/tex]

so that

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4} = \lim_{x\to\infty}\exp\left((x+4)\ln\dfrac{x+4}{x-1}\right) \\\\ = \exp\left(\lim_{x\to\infty}(x+4)\ln\dfrac{x+4}{x-1}\right) \\\\ =\exp\left(\lim_{x\to\infty}\frac{\ln\dfrac{x+4}{x-1}}{\dfrac1{x+4}}\right)[/tex]

and now evaluating "directly" at infinity gives the indeterminate form 0/0, making the limit ready for L'Hopital's rule.

We have

[tex]\dfrac{\mathrm d}{\mathrm dx}\left[\ln\dfrac{x+4}{x-1}\right] = -\dfrac5{(x-1)^2}\times\dfrac{1}{\frac{x+4}{x-1}} = -\dfrac5{(x-1)(x+4)}[/tex]

[tex]\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1{x+4}\right]=-\dfrac1{(x+4)^2}[/tex]

and so

[tex]\displaystyle \exp\left(\lim_{x\to\infty}\frac{\ln\dfrac{x+4}{x-1}}{\dfrac1{x+4}}\right) = \exp\left(\lim_{x\to\infty}\frac{-\dfrac5{(x-1)(x+4)}}{-\dfrac1{(x+4)^2}}\right) \\\\ = \exp\left(5\lim_{x\to\infty}\frac{x+4}{x-1}\right) \\\\ = \exp(5) = \boxed{e^5}[/tex]

Most of the heat loss for outdoor swimming pools is due to surface
evaporation. So, the greater the area of the surface of the pool, the greater
the heat loss. For a given perimeter, which surface shape would be more
efficient at retaining heat: a circle or a rectangle? Justify your answer.

Answers

Answer:

rectangle

Step-by-step explanation:

Perimeter of 20 feet

rectangle (square is technically a rectangle):

sides 5 and 5

5*5 = 25ft²

Circle:

20/(2π) = 3.18309...

3.1809...²π = 31.831ft²

Max area of rectangle (i.e. square) has a smaller area than a circle.

A biologist was interested in determining whether sunflower seedlings treated with and an extract from Vinca minor roots resulted in a lower average height of sunflower seedlings that the standard height of 15.7 cm. The biologist treated a random sample of 33 seedlings with the extract and subsequently measured the height of those seedlings. At the 0.01 significance level, is there evidence that the true average height of the seedlings treated with an extract from Vinca minor roots is less than 15.7 cm?

Height
15.5
15.8
15.7
15.1
15.1
15.5
15.2
15.7
15.8
15.4
16.2
15.5
16.2
15.5
15.4
16.3
14.9
15.3
15.1
16.1
15.3
15.4
15.1
15.3
14.6
15.1
15.0
15.3
15.8
15.5
14.8
15.2
14.8

a. State the null and alternative hypotheses.
b. Report the value of the test statistic. Round answer to 2 decimal places. (Either calculate or use software such as minitab)
c. Using the p-value, do you reject the null hypothesis or fail to reject the null hypothesis? Explain your decision.
d. Based on your decision in part (c), write a conclusion within the context of the problem.

Answers

Answer:

Kindly check explanation

Step-by-step explanation:

H0 : μ = 15.7

H1 : μ < 15.7

This is a one sample t test :

Test statistic = (xbar - μ) ÷ (s/√(n))

n = sample size = 33

Using calculator :

The sample mean, xbar = 15.41

The sample standard deviation, s = 0.419

Test statistic = (15.41 - 15.70) ÷ (0.419/√(33))

Test statistic = - 3.976

Using the Pvalue calculator :

Degree of freedom, df = n - 1 ; 33 - 1 = 32

Pvalue(-3.976, 32) = 0.000187

Decison region :

Reject H0 if Pvalue < α

Since Pvalue < α ; we reject H0

There is significant evidence to conclude that the true average height of the seedlings treated with an extract from Vinca minor roots is less than 15.7 cm.

find the area of the shaded regions. ANSWER IN PI FORM AND DO NOT I SAID DO NOT WRITE EXPLANATION

Answers

Answer: 18π

okokok gg

Step-by-step explanation:

Here angle is given in degree.We have convert it into radian.

[tex] {1}^{\circ} =( { \frac{\pi}{180} } )^{c} \\ \therefore \: {80}^{\circ} = ( \frac{80\pi}{180} ) ^{c} = {( \frac{4\pi}{9} })^{c} \: = \theta ^{c} [/tex]

radius r = 9 cm

Area of green shaded regions = A

[tex] \sf \: A = \frac{1}{2} { {r}^{2} }{ { \theta}^{ c} } \\ = \frac{1}{2} \times {9}^{2} \times \frac{4\pi}{9} \\ = 18\pi \: {cm}^{2} [/tex]

A store is having a sale on chocolate chips and walnuts. For 8 pounds of chocolate chips and 3 pounds of walnuts, the total cost is $34. For 2 pounds of chocolate chips and 5 pounds of walnuts, the total cost is $17. Find the cost for each pound of chocolate chips and each pound of walnuts.

Answers

Answer:

chocolate chips are $2.00 per pound.

nd walnuts must be $3.50 per pound.

Step-by-step explanation:

Let x be the price of walnuts and y the price of chocolate chips.

2x + 5y = 17 (i)

8x + 3y = 34 (ii)

Multiply (i) by 4 to get

8x + 20y = 68

Subtract (ii) to get

 17y = 34

Dividing by 17, we see that chocolate chips are $2.00 per pound.

Substituting y=2 in (i) or (ii), walnuts must be $3.50 per pound.

SOMEONE HELP ME PLEASE

Answers

Answer:

9/25

Step-by-step explanation:

3 novels , 1 bio , 1 poetry = 5 books

P( novel) = novels / books

               = 3/5

Book is returned

3 novels , 1 bio , 1 poetry = 5 books

P( novel) = novels / books

               = 3/5

P(novel, return, novel) = 3/5 * 3/5 = 9/25

Which number line represents the solutions to 1-2x = 4?

Answers

Answer:

The third choice down

Step-by-step explanation:

|-2x| = 4

There are two solutions, one positive and one negative

-2x = 4  and -2x = -4

Divide by -2

-2x/-2 = 4/-2    -2x/-2 = -4/-2

x = -2   and x = 2

An office manager has received a report from a consultant that includes a section on equipment replacement. The report indicates that scanners have a service life that is normally distributed with a mean of 41 months and a standard deviation of 4 months. On the basis of this information, determine the proportion of scanners that can be expected to fail within plus or minus 6 months of the mean. (Enter your answer as a percentage without the percent sign; keep 2 decimal places)

Answers

Answer:

The answer is "36.14%"

Step-by-step explanation:

The complete question is given in the attached file please find it.

[tex]\mu =41\\\\\sigma= 4\\\\P(42<\bar{x}<48)= p(\bar{x}<48)-p(\bar{x}<42)\\\\Z =\frac{(42-41)}{4} = \frac{1}{4} =0.25\\\\Z =\frac{(48-41)}{4} = \frac{7}{4} = 1.75\\\\[/tex]

Using z-table to find the value.

[tex]\to P(41<\bar{x}<48) = 0.9599- 0.5987 = 0.3614\times 100= 36.14\%[/tex]

This means that between 42 and 48 months, 36.14 % of scanners could be predicted will break down.

are ratios 2:3 and 8:12 equalvelent to eachother

Answers

Answer:

2:3 is equal to 8:12

Step-by-step explanation:

2:3

To get the first number to 8

8/2 = 4

Multiply by all terms 4

2*3 : 3*4

8:12

2:3 is equal to 8:12

8:12 = 8/12

= 2/3

= 2:3

Therefore 2:3 and 8:12 are equalent to each other.

Answered by Gauthmath must click thanks and mark brainliest

A rocket is launched at t = 0 seconds. Its height, in meters above sea-level, is given by the equation
h = -4.9t2 + 112t + 395.
At what time does the rocket hit the ground? The rocket hits the ground after how many seconds

Answers

Answer:

Step-by-step explanation:

In order to find out how long it takes for the rocket to hit the ground, we only need set that position equation equal to 0 (that's how high something is off the ground when it is sitting ON the ground) and factor to solve for t:

[tex]0=-4.9t^2+112t+395[/tex]

Factor that however you are factoring in class to get

t = -3.1 seconds and t = 25.9 seconds.

Since time can NEVER be negative, it takes the rocket approximately 26 seconds to hit the ground.

Which correlation best describes the data below. no correlation weak positive weak negative strong positive

Answers

There is no picture of the data

Which of the following theorems verifies that abc wxy

Answers

Answer:

C.    AA

Step-by-step explanation:

Since m<Y = 27°, then m<W = 27°.

We have two angles of one triangle (A and B) congruent to two angles of the other triangle (W and X).

Answer: C.   AA

What is the area of this triangle?
Enter your answer in the box.
units2

Answers

Answer:

8 units^2

Step-by-step explanation:

The area of a tringle is 1/2 bh. The base, LK, measures 4 while the height is also 4(you can get these values by counting the squares). This means the area is:

1/2 * (4)(4) = 1/2 * 16 = 8 units^2

Rope pieces of lengths 45 cm, 75 cm and 81 cm have to be cut into same size pieces. What is the smallest piece length possible?​

Answers

Answer:

2025 cm

Step-by-step explanation:

Given the length of pieces - 45 cm, 75 cm and 81 cm

To find the length of the rope we have to find the L.C.M. of 45, 75 and 81 :

       

3  |  45, 75, 81

    | ________________      

3  |  15, 25, 27

    |________________

3  |    5, 25, 9

    |________________

3  |    5, 25, 3

    |________________

5  |    5, 25, 1

    |________________

5  |     1, 5, 1

    |________________

    |      1, 1, 1

     

L.C.M. = 3 × 3 × 3 × 3 × 5 × 5

= 2025 cm

So, the least length of the rope should be 2025 cm which can be cut into a whole number of pieces of length 45 cm, 75 cm and 81 cm.

What is the equation of a line that passes through the point (1,8) and is perpendicular to the line whose equation is y=x/2+3?

Answers

Answer:

m=1/2

y-8=1/2(x-1)

y-8=1/2x-1/2

multiply through by 2

2y-16=x-1

2y-16+1-x=0

2y-15-x=0

2y-x-15=0

A sailor on a trans-Pacific solo voyage notices one day that if he puts 625.mL of fresh water into a plastic cup weighing 25.0g, the cup floats in the seawater around his boat with the fresh water inside the cup at exactly the same level as the seawater outside the cup (see sketch at right).
Calculate the amount of salt dissolved in each liter of seawater. Be sure your answer has a unit symbol, if needed, and round it to 2 significant digits.


You'll need to know that the density of fresh water at the temperature of the sea around the sailor is 0.999/gcm3. You'll also want to remember Archimedes' Principle, that objects float when they displace a mass of water equal to their own mass.

Answers

Answer:

can you say again please

Which of the following behaviors would best describe someone who is listening and paying attention? a) Leaning toward the speaker O b) Interrupting the speaker to share their opinion c) Avoiding eye contact d) Asking questions to make sure they understand what's being said

Answers

The answer is A and D

good luck

Other Questions
Rita got her dress __(washed wash to wash washing) Consider a political discussion group consisting of 6 Democrats, 6 Republicans, and 4 Independents. Suppose that two group members are randomly selected, in succession, to attend a political convention. Find the probability of selecting an Independent and then a Republican. ___.(Type an integer or a simplified fraction.) When 1956, Are there any events this year? HELP QUICK ILL GIVE BRAINLIEST!!!! using trig find the missing angle Write down the conservation of momentum? DuBois uses extremely strong language in his description of how America insults African-Americans. Doyou feel he is correct? Explain. Retained earnings, December 31, 2013 $342,700 Cost of buildings purchased during 2014 44,100 Net income for the year ended December 31, 2014 56,200 Dividends declared and paid in 2014 32,800 Increase in cash balance from January 1, 2014, to December 31, 2014 22,700 Increase in long-term debt in 2014 45,300 Required: Calculate the Retained Earnings balance as of December 31, 2014. Describe a law not discussed in this lesson designed to benefit ones individual health in a few sentences HELP PLEASE Urgently need help step by step explanation needed The area of a triangle is found using the formula bh/2, where b is the base and h is the height. What is the area in square inches of a triangle with a height of 6 inches and a base of 8 inches? Describe two reform movements that helped to define the Progressive Era. How many moles of Fe contains 3.41 x 1023 Fe atoms? Initially this seen as a temporary crop until the colonists learned that they could diversify it wine and other food crops. Colonists wanted to grow this crop because it made them money in short time with little investment. What was this crop? (Q017) The age of oceanic crust a. is the same throughout the world's oceans. b. is greatest at the mid-ocean ridge and least farthest from the ridge. c. has been determined by radiometric dating. d. indicates that the oldest oceanic crust is approximately 600 million years old. The tables show two functions evaluated for the givenvalues of x.Which table shows the values of the combinedfunction determined by dividing g(x) by f(x)?f(x)-8-6-4-2468108.OXg(x)f(x)-415413-17g(x)-854-410418870 | | 48Og(x)f(x)5-3-7-8-448og(x)f(x)-9-537-84Og(x)f(x)oi |41513817 The sample size needed to estimate the difference between two population proportions to within a margin of error E with a significance level of ? can be found as follows. In the expressionE=z?p1(1?p1)n1+p2(1?p2)n2?????????????????????????we replace both n1 and n2 by n (assuming that both samples have the same size) and replace each of p1, and p2, by 0.5 (because their values are not known). Then we solve for n, and getn=(z?)22E2.Finally, increase the value of n to the next larger integer number.Use the above formula and Table C to find the size of each sample needed to estimate the difference between the proportions of boys and girls under 10 years old who are afraid of spiders. Assume that we want a 99% confidence level and that the error is smaller than 0.07.n=______. find two ordered pairs for x-4y=2 As it applies to voice and tone within a persuasive business letter, which should you keep in mind? Select all that apply.Voice should be detached and formal.Voice should be familiar and informal.Avoid loaded words to appear calm.Include loaded words to appear full of life.Be sure to sound impartial (not biased). What is development?