Answer:
2.21% wt/v
Explanation:
The mass/volume percentage, %wt/v, is an unit of concentration used in chemistry defined as 100 times the ratio of the mass of solute in g (In this case, CaCl2 = 1.77g) and the volume of solution in mL = 80mL
The %wt/v of this solution is:
%wt /v = 1.77g / 80mL * 100
%wt/v = 2.21% wt/v
What is the mole of 98 mL of carbon dioxide gas at 36°C and 795 torr?
R = 0.0821 Latm/molk
Round to the thousandth place.
10. At 573K, NO2(g) decomposes forming NO and O2. The decomposition reaction is second order in NO2 with a rate constant of 1.1 M-1s-1. If the initial concentration of NO2 is 0.056 M, how long will it take for 75% of the NO2 to decompose
Answer:
48.67 seconds
Explanation:
From;
1/[A] = kt + 1/[A]o
[A] = concentration at time t
t= time taken
k= rate constant
[A]o = initial concentration
Since [A] =[A]o - 0.75[A]o
[A] = 0.056 M - 0.042 M
[A] = 0.014 M
1/0.014 = (1.1t) + 1/0.056
71.4 - 17.86 = 1.1t
53.54 = 1.1t
t= 53.54/1.1
t= 48.67 seconds
Hence,it takes 48.67 seconds to decompose.
A sample of gas contains 0.1200 mol of H2(g) and 0.1200 mol of O2(g) and occupies a volume of 11.5 L. The following reaction
takes place:
H2(g) + O2(g)>H2O2(g)
Calculate the volume of the sample after the reaction takes place, assuming that the temperature and the pressure remain constant.
L
Answer:
5.75L is the volume of the sample after the reaction
Explanation:
Based on the reaction, 1 mole of H2 reacts with 1 mole of O2 to produce 1 mole of H2O2.
As in the reaction, 0.1200 moles of H2 and 0.1200 moles of O2 are added, 0.1200 moles of H2O2 are produced.
Before the reaction, the moles of gas are 0.2400 moles and after the reaction the moles are 0.1200 moles of gas.
Based on Avogadro's law, the moles of a gas are directly proportional to the volume under temperatura and pressure constant. The equation is:
V1/n1 = V2/n2
Where V is volume and n are moles of 1, initial state and 2, final state.
Replacing:
V1 = 11.5L
n1 = 0.2400 moles
V2 = ?
n2 = 0.1200 moles
11.5L*0.1200 moles / 0.2400 moles = V2
V2 = 5.75L is the volume of the sample after the reaction
What effect does the anion of an ionic compound have on the appearance of the solution?
A. The anion affects the intensity of the color more than the color of the solution.
B. The anion affects the color of the solution more than the intensity of the color
C. The anion does not affect the color or color intensity of the solution
D. The anion only affects the intensity of the color in a solution.
Answer: B. The anion affects the color of the solution more than the intensity of the color.
Explanation:
An ionic bond is gotten when an electron is transferred from a metal atom to a non-metal one. It should be noted that the ionic bonds simply has an anion and a cation.
An anion is formed when a valence election is gained by a non metal while a cation is formed when the metal ion misplaces a valence electron.
The effect of the anion of an ionic compound on the appearance of the solution is that the anion affects the color of the solution more than the intensity of the color.
The anions affect the color of the solution more than the intensity of the color.
How do anions affect the color of the solution?Anions are the molecules or atoms that have one or more extra electrons in the valence cell.
When the number of electrons is increased or decreased in the solute molecule it completely change the color of the solution.
For example - Yellow chromate and orange dichromate
Therefore, the anions affect the color of the solution more than the intensity of the color.
Learn more about anion:
https://brainly.com/question/24937049
How many moles of HCl are contained in 0.600 L of 0.120 M HCl?
Please explain and show work.
We know
[tex]\boxed{\Large{\sf Molarity=\dfrac{No\:of\:moles\:of\:solute}{Volume\:of\:solution\:in\;\ell}}}[/tex]
[tex]\\ \Large\sf\longmapsto No\:of\:moles\:of\:HCl=0.6\times 0.12[/tex]
[tex]\\ \Large\sf\longmapsto No\:of\:moles\:of\:HCl=0.072mol[/tex]
Answer:
0.0.72
Explanation:
moles = V*CM=0.6*0.12=0.0.72
Dung dich NaCl 0.9% có 0.9g NaCl trong 100 mL dung dịch
Answer:
Explanation: Độ thẩm thấu của NaCl 0.9% và glucose 5% lần lượt là 308 và 278 ... Dung dịch natri clorid sử dụng trong pha thuốc tiêm truyền thường dùng
How many Noble gases we have in Periodic Table???
Answer:
Six
Explanation:
CHEM 100Worksheet 6Summer2021Name:____________________(5pts each, 10 pts total) Complete the following multistep synthesis problems. Show all reagents and intermediates for full credit. You do not need to show the mechanisms.
Where are the questions?
Carbon disulfide is formed by the reaction of coke (carbon) with sulfur dioxide. How many moles of CS2 will be generated if 8.0 moles of coke react with a surplus of sulfur dioxide? 5C +2502 - CS2 + 4CO A. 0.8 moles B. 1.6 moles C. 3.2 moles OD. 6.4 moles
What did Millikan discover
Answer:
Robert Millikan was a physicist who discovered the elementary charge of an electron using the oil-drop experiment
Answer:
the mass of an electron using the Oil-Drop experiment.
Explanation:
Which chemical can remove color of red/Pink phenol and make it clear like water transparent?
consider the following thermochemical reaction for kerosene
2C12H26+37O2=24CO2+15026kj.
a. when 21.3g of CO2 are made, how much heat is released?
b. if 500.00kj of heat are released by thye reaction, how many grams of C12H26 have been consumed.?
c. if this reactionwere being used to generate heat, how many grams of C12H26 would have to be reacted to generate enough heat to raise the temperature of 750g of liquid water from 10 degrees celcius to 90 degrees celcius
Thermochemistry has to do with heat evolved or absorbed in a chemical reactions. Thermochemical equations are equations in which the heat of reaction is included in the reaction equation. The reaction of moles and heat of reaction is important here.
This question has to do with thermochemistry and thermochemical equations.
The answers to each of the questions are shown below;
a) 300.52 KJ
b) 11.39 g
c) 5.78 g
The equation of the thermochemical reaction is;
2C12H26 + 37O2-------> 24CO2 + 15026KJ
Number of moles of CO2 released = 21.3g/44g/mol = 0.48 moles
From the reaction equation;
15026KJ is released when 24 moles of CO2 is released
x KJ is released when 0.48 moles of CO2 is released
x = 15026KJ * 0.48 moles/24 moles
x = 300.52 KJ
b) If 2 moles of C12H26 released 15026KJ of heat
x moles of C12H26 released 500.00KJ
x = 2 * 500.00KJ/15026KJ
x = 0.067 moles
Mass of C12H26 consumed = 0.067 moles * 170 g/mol = 11.39 g
c) Heat gained by water = heat released by combustion of kerosene
Heat gained by water = 0.75 Kg * 4200 * (90 -10)
Heat gained by water = 252 KJ
If 2 moles of C12H26 produced 15026KJ
x moles of C12H26 produces 252 KJ
x = 2 * 252/15026
x = 0.034 moles
Mass of C12H26 = 0.034 moles * 170 g/mol = 5.78 g
For more information on thermochemical equations see
https://brainly.com/question/21492209
· Acids are not safe to be used, but our stomach secretes hydrochloric acid. What would happen if the stomach does not carry out this task? Mark them brainlist
What is the name of the compound shown below?
A. 2-pentene
B. 1-propene
C. 2-propene
D. 1-pentene
The name of the compound shown below is 1- pentene. The correct answer is option D.
A compound is a substance made up of two or more different elements chemically bonded together in a fixed ratio.
1-pentene is an unsaturated hydrocarbon with the chemical formula [tex]\rm C_5H_{10}[/tex]. It is an alkene, which means it contains a carbon-carbon double bond.
The structure of 1-pentene is characterized by a chain of five carbon atoms (pentane) with one double bond between the first and second carbon atoms. The double bond causes the molecule to have a planar structure, with all atoms lying in the same plane. The remaining three carbon atoms in the chain are each bonded to two hydrogen atoms.Therefore, option D. 1-pentene is the name of the compound shown.
Learn more about compound here:
https://brainly.com/question/14117795
#SPJ6
calculate the pH of 0.01moldm-3 of trioxonitrate (v) acid
Answer:
pH = 2
Explanation:
Trioxonitrate (v) acid is also known as nitric acid (HNO₃) and is one of the strong acid set which when dissolved in water, ionizes 100%. That is,
0.01M HNO₃ => 0.01M H⁺ + 0.01M NO₃⁻ => pH = -log[H⁺] = -log(0.01) = -(-2) = 2
Which is the electronic configuration for oxygen?
A solution is made by dissolving 5.84 grams of NaCl in enough distilled water to give a final volume of 1.00 L. What is the molarity of the solution
Group of answer choices
0.0250 M
0.400 M
0.100 M
1.00 M
Answer:
Explanation:
1. A solution is made by dissolving 5.84g of NaCl is enough distilled water to a give a final volume of 1.00L. What is the molarity of the solution? a. 0.100 M b. 1.00 M c. 0.0250 M d. 0.400 M 2. A 0.9% NaCl (w/w) solution in water is a. is made by mixing 0.9 moles of NaCl in a 100 moles of water b. made and has the same final volume as 0.9% solution in ethyl alcohol c. a solution that boils at or above 100°C d. All the above (don't choose this one) 3. In an exergonic process, the system a. gains energy b. loses energy c. either gains or loses energy d. no energy change at all
Answer:
[tex]\boxed {\boxed {\sf 0.100 \ M }}[/tex]
Explanation:
Molarity is a measure of concentration in moles per liter.
[tex]molarity = \frac{moles \ of \ solute}{liters \ of \ solution}}[/tex]
The solution has 5.84 grams of sodium chloride or NaCl and a volume of 1.00 liters.
1. Moles of SoluteWe are given the mass of solute in grams, so we must convert to moles. This requires the molar mass, or the mass of 1 mole of a substance. These values are found on the Periodic Table as the atomic masses, but the units are grams per mole, not atomic mass units.
We have the compound sodium chloride, so look up the molar masses of the individual elements: sodium and chlorine.
Na: 22.9897693 g/mol Cl: 35.45 g/molThe chemical formula (NaCl) contains no subscripts, so there is 1 mole of each element in 1 mole of the compound. Add the 2 molar masses to find the compound's molar mass.
NaCl: 22.9897693 + 35.45 = 58.4397693 g/molThere are 58.4397693 grams of sodium chloride in 1 mole. We will use dimensional analysis and create a ratio using this information.
[tex]\frac {58.4397693 \ g\ \ NaCl} {1 \ mol \ NaCl}[/tex]
We are converting 5.84 grams to moles, so we multiply by that value.
[tex]5.84 \ g \ NaCl *\frac {58.4397693 \ g\ NaCl} {1 \ mol \ NaCl}[/tex]
Flip the ratio. It remains equivalent and the units of grams of sodium chloride cancel.
[tex]5.84 \ g \ NaCl *\frac {1 \ mol \ NaCl}{58.4397693 \ g\ NaCl}[/tex]
[tex]5.84 *\frac {1 \ mol \ NaCl}{58.4397693 }[/tex]
[tex]0.09993194823 \ mol \ NaCl[/tex]
2. MolarityWe can use the number of moles we just calculated to find the molarity. Remember there is 1 liter of solution.
[tex]molarity= \frac{moles \ of \ solute}{liters \ of \ solution}[/tex]
[tex]molarity= \frac{ 0.09993194823 \ mol \ NaCl}{1 \ L}[/tex]
[tex]molarity= 0.09993194823 \ mol \ NaCl/L[/tex]
3. Units and Significant FiguresThe original measurements of mass and volume have 3 significant figures, so our answer must have the same. For the number we calculated, that is the thousandths place. The 9 in the ten-thousandths place tells us to round the 9 to a 0, but then we must also the next 9 to a 0, and the 0 to a 1.
[tex]molarity \approx 0.100 \ mol \ NaCl/L[/tex]
1 mole per liter is 1 molar or M. We can convert the units.
[tex]molarity \approx 0.100 \ M \ NaCl[/tex]
The molarity of the solution is 0.100 M.
Consider the preparation of methyl benzoate by reacting benzoic acid with methanol using sulfuric acid as a catalyst. Reaction scheme of benzoic acid with methanol, conc. sulfuric acid, and heat over the arrow, and methyl benzoate and water as products. Calculate the molar masses of the reactant and product. Report molar masses to 1 decimal place. Molar mass of benzoic acid g/mol Molar mass of methyl benzoate
Answer:
See explanation
Explanation:
The molecular mass is the sum of the relative atomic masses of all the atoms in the molecule.
The relative atomic mass of reactants and products are calculated as follows;
Benzoic acid is C7H6O2 hence the molar mass of benzoic acid is ;
7(12) + 6(1) + 2(16) = 84 + 6 + 32 = 122.0 g/mol
Methyl benzoate is C8H8O2
8(12) + 8(1) + 2(16) = 96 + 8 + 32 = 136.0 g/mol
Suppose you are studying the Ksp of CaCl2, which has a molar mass of 110.98 g/mol, at multiple temperatures. You dissolve 4.99 g of CaCl2 in 10.0 mL of water at 100 oC and cool the solution. At 90 oC, a solid begins to appear. What is the Ksp of CaCl2 at 90 oC
Answer:
Hence the Solubility product,
Ksp = [Ca2+] [Cl-]2
or, Ksp = (4.5) (9)2
or, Ksp = 364.5
Explanation:
Mass of CaCl2 = 4.99 g
Molar mass of CaCl2 = 110.98 g/mol
Moles of CaCl2
= given mass/ molar mass
= 4.99/ 110.98
= 0.045
Volume = 10.0 mL = 0.01 L
CaCl2 dissociates into its ion as:
CaCl2 (s) \rightleftharpoons Ca2+ (aq) + 2 Cl- (aq)
At 90°C, the solution is saturated with Ca2+ and Cl- ions.
Moles of Ca2+ = Moles of CaCl2 dissolved = 0.045
Moles of Cl- = 2 x ( Moles of CaCl2 dissolved) = 2 x 0.045 = 0.09
[Ca2+] = Moles/ Volume = 0.045/ 0.01 = 4.5 M
[Cl-] = 0.09/ 0.01 = 9 M
Solubility product,
Ksp = [Ca2+] [Cl-]2
or, Ksp = (4.5) (9)2
or, Ksp = 364.5
g An aqueous solution of nitric acid is standardized by titration with a 0.137 M solution of calcium hydroxide. If 19.0 mL of base are required to neutralize 21.8 mL of the acid, what is the molarity of the nitric acid solution
Answer:
M of HNO₃ is 0.119M
Explanation:
A basic concept of titration is that in equivalence point:
mmoles of acid = mmoles of base
We have data from base and we only have data from volume of acid.
In a case our titration is a strong acid against a strong base.
We apply formula:
M of acid . Vol of acid = M of base . Vol of base
M of acid . 21.8 mL = 0.137M . 19 mL
M of acid = (0.137M . 19 mL) / 21.8 mL
M of acid = 0.119 M
When we neutralize all the titrant we reach the equivalence point.
At this point, pH = 7
2HNO₃ + Ca(OH)₂ → Ca(NO₃)₂ + 2H₂O
A solution is made by dissolving 0.565 g of potassium nitrate in enough water to make up 250. mL of solution. What is the molarity of this solution?
Please explain and show work.
[tex]\\ \large\sf\longmapsto KNO_3[/tex]
[tex]\\ \large\sf\longmapsto 39u+14u+3(16u)[/tex]
[tex]\\ \large\sf\longmapsto 53u+48u[/tex]
[tex]\\ \large\sf\longmapsto 101u[/tex]
[tex]\\ \large\sf\longmapsto 101g/mol[/tex]
Now
[tex]\boxed{\sf No\:of\:moles=\dfrac{Given\:mass}{Molar\:mass}}[/tex]
[tex]\\ \large\sf\longmapsto No\:of\:moles=\dfrac{0.565}{101}[/tex]
[tex]\\ \large\sf\longmapsto No\:of\:moles=0.005mol[/tex]
We know
[tex]\boxed{\sf Molarity=\dfrac{Moles\:of\:solute}{Vol\:of\:Solution\:in\:L}}[/tex]
[tex]\\ \large\sf\longmapsto Molarity=\dfrac{0.005}{\dfrac{250}{1000}L}[/tex]
[tex]\\ \large\sf\longmapsto Molarity=\dfrac{0.005}{0.250}[/tex]
[tex]\\ \large\sf\longmapsto Molarity=0.02M[/tex]
[tex] \: \: \: \: \: \: \: \: \: [/tex]
Draw the structure of the organic product(s) of the Grignard reaction between methyl benzoate and excess phenylmagnesium bromide, followed by aqueous workup. You do not have to consider stereochemistry. If a compound is formed more than once, add another sketcher and draw it again. Alternatively, you may use the square brackets tool to add stoichiometries greater than one. Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. Separate multiple products using the sign from the drop-down menu.
Answer:
See explanation and image attached
Explanation:
The product of the Grignard reaction between methyl benzoate and excess phenylmagnesium bromide is triphenyl methanol.
The reaction proceeds by nucleophillic reaction as the carbonyl moiety is attacked. A tetrahedral intermediate is formed. Loss of the -OMe group is accompanied by the attack of the first molecule of PhMgBr.
Attack by a second PhMgBr molecule yields trimethyl phenoxide. Protonation of this specie yields the final product which is obtained by aqueous workup.
At what velocity (m/s) must a 20.0g object be moving in order to possess a kinetic energy of 1.00J
Answer:
10 ms-1
Explanation:
Kinetic energy = 1/2 × m × v^2
1 = 1/2× 20 ×10^ -3 × v^2
v ^ 2 = 100
v = 10 ms-1
note : convert grams in to kg before substitution as above
Given:
Kinetic energy,
K.E = 1.00 JMass,
m = 20.0 gWe know the formula,
→ [tex]K.E = \frac{1}{2} mv^2[/tex]
By putting the values, we get
[tex]1 = \frac{1}{2}\times 20\times 10^{-3}\times (v)^2[/tex]
[tex]v^2 = 100[/tex]
[tex]v = \sqrt{100}[/tex]
[tex]v = 10 \ m/s[/tex]
Thus the above response is correct.
Learn more about K.E here:
https://brainly.com/question/24997625
5. How many moles are present in 4.20x10^24 atoms of Pb
Explanation:
[tex]57816 \: moles[/tex]
are present in 4.20x10^24 atoms of Pb
Answer:
7 moles
Explanation:
(4.2*10^24)/(6*10^23)=7
What is the molecule shown below?
A. Pentane
B. Trimethylethane
C. 2,2-dimethylpropane
D. 3-dipropane
Q2
Answer:
C
Explanation:
if we were to followw the IUPAC
Determine the total pressure of a mixture that contains 5.25 g of He and 3.25 g of N2 in a 7.75-L flask at a temperature of 27ºC.
Answer:
4.54 atm
Explanation:
Step 1: Calculate the total number of gaseous moles
We will calculate the moles of each gas using its molar mass.
He: 5.25 g × 1 mol/4.00 g = 1.31 mol
N₂: 3.25 g × 1 mol/28.01 g = 0.116 mol
The total number of moles is:
n = 1.31 mol + 0.116 mol = 1.43 mol
Step 2: Convert 27 °C to Kelvin
We will use the following expression.
K = °C + 273.15 = 27 + 273.15 = 300 K
Step 3: Calculate the total pressure of the mixture
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 1.43 mol × (0.0821 atm.L/mol.K) × 300 K / 7.75 L = 4.54 atm
How did Kepler's discoveries contribute to astronomy?
O They supported the heliocentric model.
O They established the laws of planetary motion.
O They explained how the Sun rises and sets.
O They made astronomy accessible to people who spoke Italian.
They made astronomy accessible to people who spoke italian
Answer:
"They established the laws of planetary motion"
Explanation:
Mr. Kepler was the astronomer who came up with the "Laws of Planetary Motion."
What is the concentration of HI in the final solution when 65 mL of a 3.0 M HI solution is diluted with pure water to a total volume of 0.15 L g?
Answer:
The concentration of HI in the final solution is 1.3 M.
Explanation:
Dilution is the reduction in concentration of a chemical in a solution. It is achieved by adding more solvent to the same amount of solute.
In other words, in a dilution, the amount of solute does not change, but the volume of the solvent does: as more solvent is added, the concentration of the solute decreases, since the volume (and weight) of the solution increases.
When dealing with dilution you will use the following equation:
C1*V1= C2*V2
C1 = initial concentration V1 = initial volume C2 = final concentration V2 = final volumeIn this case:
C1 = 3 M V1 = 65 mL= 0.065 L (being 1000 mL= 1 L) C2 = ? V2 = 0.15 LReplacing:
3 M* 0.065 L= C2*0.15 L
Solving:
[tex]C2=\frac{3 M*0.065 L}{0.15 L}[/tex]
C2= 1.3 M
The concentration of HI in the final solution is 1.3 M.
draw all the possible isomers of octane
Answer:
helps
Explanation:
A substance which is made up of the same kind
of atom is known as?
Answer:
Element
Element : A pure substance composed of the same type of atom throughout. Compound : A substance made of two or more elements that are chemically combined in fixed amounts.
Explanation: