Sh363gdbzej3yve truly urban urge Heydyeh hdye
Find the measure of the incanted angle to the nearest degree
Answer:
15.4 degrees
Step-by-step explanation:
b= 53
h = 55
cos -¹( 53/53)= 15.4
There are 8 midsize cars and 15 compact cars and 6 will be selected. What is the probability of selecting all midsize cars?
Answer:
Assuming order does not matter, the probability of selecting all midsize cars is 0.000277373, or [tex]\frac{4}{14421}[/tex].
Step-by-step explanation:
First, we must find the n(Total arrangements of selections)=(8+15)C6
n(Total arrangements of selections)=23C6
n(Total arrangements of selections)=100,947
Second, we must find the n(Arrangements where all are midsize cars)=8C6
n(Arrangements where all are midsize cars)=28
To find the probability of selecting all midsize cars, we divide the n(Arrangements where all are midsize cars) by the n(Total arrangements of selections):
P(All midsize cars)= [tex]\frac{28}{100,947}[/tex]
P(All midsize cars)= [tex]\frac{4}{14421}[/tex]=0.000277373.
Solve x∕3 < 5 Question 5 options: A) x ≥ 15 B) x > 15 C) x < 15 D) x ≤ 15
Answer:
C
Step-by-step explanation:
Given
[tex]\frac{x}{3}[/tex] < 5 ( multiply both sides by 3 to clear the fraction )
x < 15 → C
Which of the following pairs of functions are inverses of each other?
A. f(x) = 5 + x and g(x) = 5 - x
B. f(x) = 2x -9 and g(x)=x+9/2
C. f(x) = 3-6 and g(x)=x+6/2
D. f(x)= x/3+4 and g(x) = 3x - 4
The pair of functions that are inverses of each other is B. f(x) = 2x - 9 and g(x) = x + 9/2.
To determine if two functions are inverses of each other, we need to check if the composition of the functions results in the identity function, which is f(g(x)) = x and g(f(x)) = x.
Let's analyze the given options:
A. f(x) = 5 + x and g(x) = 5 - x
To check if they are inverses, we compute f(g(x)) = f(5 - x) = 5 + (5 - x) = 10 - x, which is not equal to x. Similarly, g(f(x)) = g(5 + x) = 5 - (5 + x) = -x, which is also not equal to x. Therefore, these functions are not inverses.
B. f(x) = 2x - 9 and g(x) = x + 9/2
By calculating f(g(x)) and g(f(x)), we find that f(g(x)) = x and g(f(x)) = x, which means these functions are inverses of each other.
C. f(x) = 3 - 6 and g(x) = x + 6/2
Similar to option A, we compute f(g(x)) and g(f(x)), and find that they are not equal to x. Hence, these functions are not inverses.
D. f(x) = x/3 + 4 and g(x) = 3x - 4
After evaluating f(g(x)) and g(f(x)), we see that f(g(x)) = x and g(f(x)) = x. Therefore, these functions are inverses of each other.
In summary, the pair of functions that are inverses of each other is B. f(x) = 2x - 9 and g(x) = x + 9/2.
Learn more about function here:
https://brainly.com/question/782311
#SPJ8
Aliana is supposed to get back to a customer with an answer about a refund by the end of the day, but she won't have all the approvals she needs to process the refund by that time. What should she do? O a) Call the customer only when she has processed the refund Ob Tell the customer that she should have called about the problem earlier Oc) Explain to the customer that her bosses are the ones that are taking forever O di Apologize to the customer and say that she will call her tomorrow with an update
Answer:
"ob" is the answer of this long question
Answer:
D
Step-by-step explanation:
reason:
not A cuz the customer has to wait for a long time, and she feel waste of time
not B cus it's the store's responsiblity, not customer. if she said that, the customer would feel be disrespected. and i swear she never comes back that store.
C if she said that, customer also feel waste of time when she has to talk with Aliana who cant solve her problem
and the boss will think Ali couldnt have no problem-solving skills
plz help and explain this :)
Answer:
y=3x+6
Step-by-step explanation:
in a line graph, y=mx+c
m refers to gradient, c refers to y-intercept.
since lines are parallel, both lines have the same gradient.
the line intersects (1,9)
x=1,y=9
9=3(1)+c
c=6
so y=3x+6
Answer:
y = 3x+6
Step-by-step explanation:
Parallel lines have the same slope
y = 3x+2 is in slope intercept form (y=mx+b where m is the slope and b is the y intercept)
So the slope is 3
Y = 3x+2
Using the point given substitute into the equation and solve for b
9 = 3(1)+b
9 =3+b
9-3 =b
6=b
y = 3x+6
Your true height is 70.2 inches. A laser device at a health clinic that gives measurements to thenearest hundredth reads your height as 71.05 inches. A tape measure gives reading to the nearest haftinches gives your height as 69.5 inches. State which measurement is more precise and which measurementis more accurate and explain why.
Answer:
Accuracy = Tape measurement.
Precision = Laser measurement
Step-by-step explanation:
Given that :
True height, = 70.2 inches
Laser measured height = 71.05 (nearest hundredth)
Tape measured height = 69.5 - nearest half inch.
Accuracy simply means how close a measured value is to the true value of the measurement. ;
True height - tape measurement
70.2 - 69.5 = 0.7
True measurement - laser measurement :
|70.2 - 71.05| = 0.85
Fron the difference in the values, the measurement which is closer to the true height is the tape measurement.
However, in terms of detail in the measured value, the laser measure value is expressed to the nearest hundredth, hence giving it more precision over the tape measured value.
A certain university has 25,000 registered students. To estimate the percentage who are living at home, a simple random sample of 400 students is drawn. It turns out that 317 of them are living at home. Now, 317 out of 400 is (about) 79%. Indicate whether each quantity is actual or estimated from the data. You'll get partial credit for
Answer:
Indication of Actual Quantity and Estimated Quantity
Actual Quantity:
Registered students in the university = 25,000
Sample of students = 400
Students living at home = 317
Estimated Quantity:
317 out of 400 students
79%
Step-by-step explanation:
An actual quantity does not require to be estimated. It is usually given in the question or scenario. For example, the number of registered students in the university is an actual quantity. The percentage of students who live at home from the simple random sample of 400 is an estimated quantity.
Silicone implant augmentation rhinoplasty is used to correct congenital nose deformities. The success of the procedure depends on various biomechanical properties of the human nasal periosteum and fascia. An article reported that for a sample of 10 (newly deceased) adults, the mean failure strain (%) was 24.0, and the standard deviation was 3.2.
Required:
a. Assuming a normal distribution for failure strain, estimate true average strain in a way that converys information about precision and reliability.
b. Predict the strain for a single adult in a way that conveys information about precision and reliability. How does the prediction compare to the estimate calculated in part (a)?
Solution :
Given information :
A sample of n = 10 adults
The mean failure was 24 and the standard deviation was 3.2
a). The formula to calculate the 95% confidence interval is given by :
[tex]$\overline x \pm t_{\alpha/2,-1} \times \frac{s}{\sqrt n}$[/tex]
Here, [tex]$t_{\alpha/2,n-1} = t_{0.05/2,10-1}$[/tex]
= 2.145
Substitute the values
[tex]$24 \pm 2.145 \times \frac{3.2}{\sqrt {10}}$[/tex]
(26.17, 21.83)
When the [tex]\text{sampling of the same size}[/tex] is repeated from the [tex]\text{population}[/tex] [tex]n[/tex] infinite number of [tex]\text{times}[/tex], and the [tex]\text{confidence intervals}[/tex] are constructed, then [tex]95\%[/tex] of them contains the [tex]\text{true value of the population mean}[/tex], μ in between [tex](26.17, 21.83)[/tex]
b). The formula to calculate 95% prediction interval is given by :
[tex]$\overline x \pm t_{\alpha/2,-1} \times s \sqrt{1+\frac{1}{n}}$[/tex]
[tex]$24 \pm 2.145 \times 3.2 \sqrt{1+\frac{1}{10}}$[/tex]
(31.13, 16.87)
Assume 2 in every 3000 students at the local community college have to quit due to serious health issues. An insurance company offers them $12000 policy for $40a year. What is the amount the insurance company should expect to make on average on every student that pays?
The amount the insurance company should expect to make on average on every student that pays is $
Answer:
$32
Step-by-step explanation:
Multiply $40*3000 students. Subtract 2 students that might receive a $12000 policy each. Divide by 3000 students to find average payout.
What is the sum of the geometric sequence 1, 3, 9, ... if there are 10 terms? (5 points)
Answer:
[tex]S_n = \frac{1 (1 - 3^{10})}{1 - 3} = 29524[/tex]
Step-by-step explanation:
There's a handy formula we can use to find the sum of a geometric sequence, and here it is
[tex]S_n = \frac{a_1 (1 - r^n)}{1 - r}[/tex]
The value n represents the amount of terms you want to sum in the sequence. The variable r is known as the common ratio, and a is just some constant. Let's find those values.
First lets visualize this sequence
[tex]n_1 = 1\\n_2 = 1 + 3\\n_3 = 1 + 3 + 3^2\\n_4=1+3+3^2+3^3\\...[/tex]
Okay so there's clearly a pattern here, let's write it a bit more concisely. For each n, starting at 1, we raise 3 to the (n-1) power, add it to what we had for the previous term.
[tex]S_n = \sum{3^{n-1}} = 3^{1 - 1} + 3^{2 - 1} + 3^{3-1} ...[/tex]
Our coefficients of r, and a, are already here! As you can see below, r is just 3, and a is just 1.
[tex]S_n = \sum{a*r^{n-1}}[/tex]
To finish up lets plug these coefficients in and get our sum after 10 terms.
[tex]S_n = \frac{1 (1 - 3^{10})}{1 - 3} = 29524[/tex]
Please help!
Answers
A,B,C and D
The information is already in the chart
( ignore the charts below question 2.)
I believe the answer is B!
Hope this helped you! Please follow my account, thanks!
Put the following equation of a line into slope-intercept form, simplifying all fractions 2x-2y=14
Answer: y = x - 7
Slope intercept form: y = mx + b
[tex]2x-2y=14\\\\-2y=-2x+14\\\\y=\frac{-2x+14}{-2} =\frac{-2(x-7)}{-2} =x-7[/tex]
An expression is shown below:
10n3 − 15n2 + 20xn2 − 30xn
Part A: Rewrite the expression so the GCF is factored completely. (4 points)
Part B: Rewrite the expression completely factored. Show the steps of your work.
Answer:
An expression is shown below:
10n³− 15n² + 20xn² − 30xn
Part A: Rewrite the expression so the GCF is factored completely. (4 points)
10n³− 15n² + 20xn² − 30xn
2*5*n*n*n-5*3*n*n+2*5*2*x*n*n-2*5*3*x*n
Greatest common factor=5*n=5n
Part B: Rewrite the expression completely factored. Show the steps of your work.
Solution given;
10n³− 15n² + 20xn² − 30xn
5n(2n²-3n+4xn-6x)
5n(2n²+4xn-3n-6x)
5n(2n(n+2x)-3(n+2x))
5n(n+2x)(2n-3)
Answer:
[tex]5n(2n-3)(n+2x)[/tex]
Step-by-step explanation:
Step 1: Rewrite the expression so the GCF is factored completely
[tex]10n^{3} - 15n^{2} + 20xn^{2} - 30xn[/tex]
The GCF is 5n so factor it out
[tex]5n(2n^{2} - 3n + 4xn - 6x)[/tex]
Step 2: Rewrite the expression completely factored
[tex]5n(2n^{2} - 3n + 4xn - 6x)[/tex]
[tex]5n(2n(n+2x)-3(n+2x))[/tex]
[tex]5n(2n-3)(n+2x)[/tex]
Answer: [tex]5n(2n-3)(n+2x)[/tex]
A tank contains 9,000 L of brine with 18 kg of dissolved salt. Pure water enters the tank at a rate of 90 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate.
(a) How much salt is in the tank after t minutes?
(b) How much salt is in the tank after 20 minutes?
Let x(t) denote the amount of salt (in kg) in the tank at time t. The tank starts with 18 kg of salt, so x (0) = 18.
The solution is drained from the tank at a rate of 90 L/min, so that the amount of salt in the tank changes according to the differential equation
dx(t)/dt = - (x(t) kg)/(9000 L) × (90 L/min) = -1/100 x(t) kg/min
or, more succintly,
x' = -1/100 x
This equation is separable as
dx/x = -1/100 dt
Integrating both sides gives
∫ dx/x = -1/100 ∫ dt
ln|x| = -1/100 t + C
x = exp(-1/100 t + C )
x = C exp(-t/100)
(a) Using the initial condition x (0) = 18, we find
18 = C exp(0) ==> C = 18
so that
x(t) = 18 exp(-t/100)
(b) After 20 minutes, we have
x (20) = 18 exp(-20/100) = 18 exp(-1/5) ≈ 14.74
so the tank contains approximately 14.74 kg of salt after this time.
The length of a rectangle is 10 yd less than three times the width, and the area of the rectangle is 77 yd^2. Find the dimensions of the rectangle.
Answer:
width = 7, length = 11
Step-by-step explanation:
area = 77
length = 3w - 10
width = w
w(3w - 10) = 77
3w^2 - 10w - 77 = 0
(3w + 11)(w - 7) = 0
we rule out 3w + 11 = 0 because w would be negative
so we use w - 7 = 0
so the width = 7
length = 3w - 10
length = 21 - 10
length = 11
Use the ratio of a 45-45-90triangle to solve for the variables. Make sure to simplify radicals. Leave your answers as radicals in simplest form.
9514 1404 393
Answer:
m = n = 5
Step-by-step explanation:
The side ratios in a 45°-45°-90° triangle are 1 : 1 : √2. That is, the hypotenuse is √2 times the side length. Here, the hypotenuse is 5√2, so the side length must be 5.
m = n = 5
Given parallelogram RUST and m< RUT=43, what other angle has the same measurement
9514 1404 393
Answer:
(b) ∠STU
Step-by-step explanation:
Transversal UT between parallel sides RU and ST creates alternate interior angles RUT and STU. These are congruent.
∠STU has the same measure as ∠RUT
_____
The figure shown is a trapezoid, not a parallelogram.
A ball is thrown from an initial height of 4 feet with an initial upward velocity of 40 feet per second. The ball's height h (in feet) after t seconds is given by the following. h=4+40t-16t2 Find all values of for which the ball's height is 26 feet.
Answer:
Step-by-step explanation:
To find the times that the height is 26 feet, we set the position equation equal to 26 and solve for t:
[tex]26=-16t^2+40t+4[/tex] and
[tex]0=-16t^2+40t-22[/tex] and factor that however you are factoring in class to solve a problem like this. When you do that you get
t = .86 seconds and t = 1.68 seconds. That means that .86 seconds after the ball is thrown into the air, it reaches a height of 26 feet; it goes up to its max height and then gravity takes over and pulls it back down. When this happens, it will pass 26 feet again on its way back down. This second time is after 1.68 seconds.
5+(-7)=
A-12
B
-2
с
2
D
12
E
none of these
Answer:
-2
Step-by-step explanation:
5 + (-7)
Since the 7 is larger than 5, the 7 will overpower the 5 in a way. So, all you do is subtract 7 and 5.
7 - 5 = 2
But the 7 has a negative with it (since it's larger), so you add the negative to the 2.
7 - 5 = -2
The answer will be -2.
The maximum and minimum values of a quadratic function are called as________of the function.
Vertex is the point where the function is at its maximum/ minimum.
A =
1
9
4 1 −8
7 4 4
4 −8 1
I don't know sorry I am weak in math
Help ! Please and thanks
Bạn được một cá nhân thuê làm tư vấn tài chính, anh ta nhận được 2 đề nghị hợp ký đồng làm
việc với thời hạn 5 năm theo 2 sự lựa chọn sau:
- Lựa chọn 1: Lương 3 triệu/năm
- Lựa chọn 2: Lương 1.5 triệu/năm và được thưởng 9 triệu khi kết thúc hợp đồng làm việc.
a. Nếu lãi suất 8% bạn sẽ khuyên anh ta nhận lựa chọn nào?
b. Nếu lãi suất tăng 10% theo bạn có cần phải đổi lựa chọn không?
Math geometry worth 30 points
What is the value of x?
Answer:
x = 3
Step-by-step explanation:
First, use trigonometric function to find RT.
θ = 60°
Opposite = 2√3
Hypotenuse = RT
Apply SOH:
Sin θ = Opp/Hyp
Plug in the values
Sin 60° = 2√3/RT
RT*Sin 60° = 2√3
Divide both sides by Sin 60°
RT = 2√3/sin 60°
RT = 2√3 × √3/2 (sin 60° = √3/2)
RT = (2√3 × √3)/2
RT = (2 × 3)/2
RT = 3
✔️Find x
θ = 45°
Opposite = x
Adjacent = 3
Apply TOA:
Tan θ = Opp/Adj
Substitute
Tan 45° = x/3
3 × Tan 45° = x
3 × 1 = x (tan 45° = 1)
3 = x
x = 3
Please help explanation if possible
Answer:
10% gain
Step-by-step explanation:
[P2-P1]/P1
(33-30)/30=3/30=.1 or 10% gain.
Answer:
10%
Step-by-step explanation:
→ Minus the new share from the old one
33 - 30 = 3
→ Divide the answer by the original price
3 ÷ 30 = 0.1
→ Multiply the answer by 100
0.1 × 100 = 10%
write fifty and two hundreds eight thousandths as a mixed decimal
Answer:
Pretty sure it's 0.528
PLS HELP I DONT KNOW THIS ONE
Answer:
x+3
---------------
(x-3)(x-2)(x-4)
Step-by-step explanation:
x+4 x^2 -16
---------------÷ -------------
x^2 - 5x+6 x+3
Copy dot flip
x+4 x+3
--------------- * -------------
x^2 - 5x+6 x^2 -16
Factor
x+4 x+3
--------------- * -------------
(x-3)(x-2) (x-4)(x+4)
Cancel like terms
1 x+3
--------------- * -------------
(x-3)(x-2) (x-4)1
x+3
--------------- x cannot equal 3,2,4 -4
(x-3)(x-2)(x-4)
Determine what type of transformation is represented.
A. none of these
B. reflection
C. dilation
D. rotation
Answer:
The answer is "Option D"
Step-by-step explanation:
In a rotation, an item is rotated around with a known location. Clockwise or anticlockwise spinning is possible. Rotation centers are spherical geometry in space where rotation occurs. The direction of inclination is the indicator of the total rotation made. Rotary point refers to that part point of a figure around which it is revolved.
PLEASE HELP
Write the equation of the line that is perpendicular to the given segment and that passes through the point (-6, -3). A. 1 V=--x-3 2 B. 1 V=--X-6 2 C. y = 2x + 9 D. = 2x-6.
Answer:
C
Step-by-step explanation:
The slope of the line will be (2) and the equation will be C